Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 21321, 2023 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-38044369

RESUMEN

Accurate forecasting of hospital bed demand is crucial during infectious disease epidemics to avoid overwhelming healthcare facilities. To address this, we developed an intuitive online tool for individual hospitals to forecast COVID-19 bed demand. The tool utilizes local data, including incidence, vaccination, and bed occupancy data, at customizable geographical resolutions. Users can specify their hospital's catchment area and adjust the initial number of COVID-19 occupied beds. We assessed the model's performance by forecasting ICU bed occupancy for several university hospitals and regions in Germany. The model achieves optimal results when the selected catchment area aligns with the hospital's local catchment. While expanding the catchment area reduces accuracy, it improves precision. However, forecasting performance diminishes during epidemic turning points. Incorporating variants of concern slightly decreases precision around turning points but does not significantly impact overall bed occupancy results. Our study highlights the significance of using local data for epidemic forecasts. Forecasts based on the hospital's specific catchment area outperform those relying on national or state-level data, striking a better balance between accuracy and precision. These hospital-specific bed demand forecasts offer valuable insights for hospital planning, such as adjusting elective surgeries to create additional bed capacity promptly.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Ocupación de Camas , Predicción , Equipos y Suministros de Hospitales , Hospitales Universitarios
2.
Infect Control Hosp Epidemiol ; 42(6): 653-658, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32928337

RESUMEN

BACKGROUND: The pressures exerted by the coronavirus disease 2019 (COVID-19) pandemic pose an unprecedented demand on healthcare services. Hospitals become rapidly overwhelmed when patients requiring life-saving support outpace available capacities. OBJECTIVE: We describe methods used by a university hospital to forecast case loads and time to peak incidence. METHODS: We developed a set of models to forecast incidence among the hospital catchment population and to describe the COVID-19 patient hospital-care pathway. The first forecast utilized data from antecedent allopatric epidemics and parameterized the care-pathway model according to expert opinion (ie, the static model). Once sufficient local data were available, trends for the time-dependent effective reproduction number were fitted, and the care pathway was reparameterized using hazards for real patient admission, referrals, and discharge (ie, the dynamic model). RESULTS: The static model, deployed before the epidemic, exaggerated the bed occupancy for general wards (116 forecasted vs 66 observed), ICUs (47 forecasted vs 34 observed), and predicted the peak too late: general ward forecast April 9 and observed April 8 and ICU forecast April 19 and observed April 8. After April 5, the dynamic model could be run daily, and its precision improved with increasing availability of empirical local data. CONCLUSIONS: The models provided data-based guidance for the preparation and allocation of critical resources of a university hospital well in advance of the epidemic surge, despite overestimating the service demand. Overestimates should resolve when the population contact pattern before and during restrictions can be taken into account, but for now they may provide an acceptable safety margin for preparing during times of uncertainty.


Asunto(s)
COVID-19/epidemiología , Capacidad de Camas en Hospitales , Hospitales Universitarios/organización & administración , COVID-19/prevención & control , Infección Hospitalaria/prevención & control , Predicción , Alemania/epidemiología , Hospitales Universitarios/estadística & datos numéricos , Humanos , Incidencia , Modelos Estadísticos , Seguridad del Paciente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...