Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Host Microbe ; 28(6): 780-788.e5, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33053375

RESUMEN

The intestinal epithelium separates host tissue and gut-associated microbial communities. During inflammation, the host releases reactive oxygen and nitrogen species as an antimicrobial response. The impact of these radicals on gut microbes is incompletely understood. We discovered that the cryptic appBCX genes, predicted to encode a cytochrome bd-II oxidase, conferred a fitness advantage for E. coli in chemical and genetic models of non-infectious colitis. This fitness advantage was absent in mice that lacked epithelial NADPH oxidase 1 (NOX1) activity. In laboratory growth experiments, supplementation with exogenous hydrogen peroxide enhanced E. coli growth through AppBCX-mediated respiration in a catalase-dependent manner. We conclude that epithelial-derived reactive oxygen species are degraded in the gut lumen, which gives rise to molecular oxygen that supports the aerobic respiration of E. coli. This work illustrates how epithelial host responses intersect with gut microbial metabolism in the context of gut inflammation.


Asunto(s)
Complejo IV de Transporte de Electrones/fisiología , Escherichia coli/fisiología , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , NADPH Oxidasa 1/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Aerobiosis , Animales , Colitis/inducido químicamente , ADN Bacteriano , Modelos Animales de Enfermedad , Proteínas de Escherichia coli/fisiología , Femenino , Microbioma Gastrointestinal , Interacciones Microbiota-Huesped , Peróxido de Hidrógeno/metabolismo , Inflamación/microbiología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microbiota , NADPH Oxidasa 1/genética , Oxígeno/metabolismo
2.
Nature ; 553(7687): 208-211, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29323293

RESUMEN

Inflammatory diseases of the gastrointestinal tract are frequently associated with dysbiosis, characterized by changes in gut microbial communities that include an expansion of facultative anaerobic bacteria of the Enterobacteriaceae family (phylum Proteobacteria). Here we show that a dysbiotic expansion of Enterobacteriaceae during gut inflammation could be prevented by tungstate treatment, which selectively inhibited molybdenum-cofactor-dependent microbial respiratory pathways that are operational only during episodes of inflammation. By contrast, we found that tungstate treatment caused minimal changes in the microbiota composition under homeostatic conditions. Notably, tungstate-mediated microbiota editing reduced the severity of intestinal inflammation in mouse models of colitis. We conclude that precision editing of the microbiota composition by tungstate treatment ameliorates the adverse effects of dysbiosis in the inflamed gut.


Asunto(s)
Colitis/tratamiento farmacológico , Colitis/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Intestinos/microbiología , Anaerobiosis/efectos de los fármacos , Animales , Respiración de la Célula/efectos de los fármacos , Disbiosis/tratamiento farmacológico , Disbiosis/microbiología , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/crecimiento & desarrollo , Enterobacteriaceae/metabolismo , Femenino , Inflamación/tratamiento farmacológico , Inflamación/microbiología , Inflamación/patología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Intestinos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Molibdeno/metabolismo , Compuestos de Tungsteno/farmacología , Compuestos de Tungsteno/uso terapéutico
3.
Cell Host Microbe ; 21(2): 208-219, 2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-28182951

RESUMEN

Intestinal inflammation is frequently associated with an alteration of the gut microbiota, termed dysbiosis, which is characterized by a reduced abundance of obligate anaerobic bacteria and an expansion of facultative Proteobacteria such as commensal E. coli. The mechanisms enabling the outgrowth of Proteobacteria during inflammation are incompletely understood. Metagenomic sequencing revealed bacterial formate oxidation and aerobic respiration to be overrepresented metabolic pathways in a chemically induced murine model of colitis. Dysbiosis was accompanied by increased formate levels in the gut lumen. Formate was of microbial origin since no formate was detected in germ-free mice. Complementary studies using commensal E. coli strains as model organisms indicated that formate dehydrogenase and terminal oxidase genes provided a fitness advantage in murine models of colitis. In vivo, formate served as electron donor in conjunction with oxygen as the terminal electron acceptor. This work identifies bacterial formate oxidation and oxygen respiration as metabolic signatures for inflammation-associated dysbiosis.


Asunto(s)
Disbiosis/microbiología , Escherichia coli/metabolismo , Formiatos/metabolismo , Inflamación/microbiología , Animales , Colitis/microbiología , Modelos Animales de Enfermedad , Femenino , Microbioma Gastrointestinal , Intestinos/microbiología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteobacteria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA