Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Environ Int ; 183: 108371, 2024 Jan.
Article En | MEDLINE | ID: mdl-38103345

There is increasing awareness that chemical pollution of freshwater systems with complex mixtures of chemicals from domestic sources, agriculture and industry may cause a substantial chemical footprint on water organisms, pushing aquatic ecosystems outside the safe operating space. The present study defines chemical footprints as the risk that chemicals or chemical mixtures will have adverse effects on a specific group of organisms. The aim is to characterise these chemical footprints in European streams based on a unique and uniform screening of more than 600 chemicals in 445 surface water samples, and to derive site- and compound-specific information for management prioritisation purposes. In total, 504 pesticides, biocides, pharmaceuticals and other compounds have been detected, including frequently occurring and site-specific compounds with concentrations up to 74 µg/L. Key finding is that three-quarter of the investigated sites in 22 European river basins exceed established thresholds for chemical footprints in freshwater, leading to expected acute or chronic impacts on aquatic organisms. The largest footprints were recorded on invertebrates, followed by algae and fish. More than 70 chemicals exceed thresholds of chronic impacts on invertebrates. For all organism groups, pesticides and biocides were the main drivers of chemical footprints, while mixture impacts were particularly relevant for invertebrates. No clear significant correlation was found between chemical footprints and the urban discharge fractions, suggesting that effluent-specific quality rather than the total load of treated wastewater in the aquatic environment and the contribution of diffuse sources, e.g. from agriculture, determine chemical footprints.


Disinfectants , Pesticides , Water Pollutants, Chemical , Animals , Rivers/chemistry , Ecosystem , Water Pollutants, Chemical/analysis , Invertebrates , Pesticides/analysis , Aquatic Organisms , Water , Environmental Monitoring
2.
Water Res ; 217: 118382, 2022 Jun 15.
Article En | MEDLINE | ID: mdl-35413560

There is significant debate about why less than half of European rivers and streams are in good ecological status, despite decades of intense regulatory efforts. Of the multiple stressors that are recognized as potential contributors to stream degradation, we focus on discharge from 26,500 European wastewater treatment plants (WWTPs). We tested the hypothesis that stream ecological status degradation across Europe is related to the local intensity of wastewater discharge, with an expected stream-order (ω) dependence based on the scaling laws that govern receiving stream networks. We found that ecological status in streams (ω≤3) declined consistently with increasing urban wastewater discharge fraction of stream flow (UDF) across river types and basins. In contrast, ecological status in larger rivers (ω≥4) was not related to UDF. From a continental-scale logistic regression model (accuracy 86%) we identified an ecologically critical threshold UDF = 6.5% ± 0.5. This is exceeded by more than one third of WWTPs in Europe, mostly discharging into smaller streams. Our results suggest that new receiving water-specific strategies for wastewater management are needed to achieve good ecological status in smaller streams.


Ecosystem , Water Purification , Environmental Monitoring/methods , Rivers , Wastewater
3.
Water Res ; 193: 116887, 2021 Apr 01.
Article En | MEDLINE | ID: mdl-33582496

Algae, as primary producers in riverine ecosystems, are found in two distinct habitats: benthic and pelagic algae typically prevalent in shallow/small and deep/large streams, respectively. Over an entire river continuum, spatiotemporal patterns of the two algal communities reflect specificity in habitat preference determined by geomorphic structure, hydroclimatic controls, and spatiotemporal heterogeneity in nutrient loads from point- and diffuse-sources. By representing these complex interactions between geomorphic, hydrologic, geochemical, and ecological processes, we present here a new river-network-scale dynamic model (CnANDY) for pelagic (A) and benthic (B) algae competing for energy and one limiting nutrient (phosphorus, P). We used the urbanized Weser River Basin in Germany (7th-order; ~8.4 million population; ~46 K km2) as a case study and analyzed simulations for equilibrium mass and concentrations under steady median river discharge. We also examined P, A, and B spatial patterns in four sub-basins. We found an emerging pattern characterized by scaling of P and A concentrations over stream-order ω, whereas B concentration was described by three distinct phases. Furthermore, an abrupt algal regime shift occurred in intermediate streams from B dominance in ω≤3 to exclusive A presence in ω≥6. Modeled and long-term basin-scale monitored dissolved P concentrations matched well for ω>4, and with overlapping ranges in ω<3. Power-spectral analyses for the equilibrium P, A, and B mass distributions along hydrological flow paths showed stronger clustering compared to geomorphological attributes, and longer spatial autocorrelation distance for A compared to B. We discuss the implications of our findings for advancing hydro-ecological concepts, guiding monitoring, informing management of water quality, restoring aquatic habitat, and extending CnANDY model to other river basins.


Ecosystem , Rivers , Environmental Monitoring , Germany , Phosphorus/analysis
4.
Sci Total Environ ; 737: 139544, 2020 Oct 01.
Article En | MEDLINE | ID: mdl-32512293

Wastewater treatment plants (WWTP) are considered to be a point source of microplastic (particles <5 mm) for riverine environments. However, data on microplastic effluent concentrations in WWTPs is collected with a broad range of methods, which impede comparisons across data sets. We provide an estimate of the annual emissions of microplastic particles by WWTPs into the ten major river basins of Germany. We analyze the concentration patterns of microplastics among different stream orders resulting from the spatial organization of WWTPs along the river network. The local in-stream microplastic concentrations are estimated through a network model that accounts for routing of microplastics through the entire fluvial network under the assumption of no losses by sedimentation, entanglement or degradation. Previous studies have observed microplastic concentrations in treated WWTPs effluents ranging several orders of magnitude. In 19 studies reviewed (2016-2020), the concentrations of observed microplastic concentrations (size range between 10 and 5000 µm) in 79 WWTP effluents ranged between 4 ∗ 100 and 4.5 ∗ 105 items/m3 with a median of around 6400 items/m3. The total, median microplastic load emitted by WWTPs in Germany is 7 ∗ 1012 items/year. The simulated microplastic concentrations, on average, tend to increase with increasing stream order suggesting that the WWTP effluent fraction accumulates with a higher rate than discharge. Simulated WWTP-derived in-stream concentrations are higher than observed concentrations with all sources of microplastic, not only those from WWTPs. Observed microplastic concentrations in rivers as well as the considerably higher simulated, WWTP-derived microplastic concentration, even for low flow conditions, are approximately one order of magnitude below currently known toxic effect levels.

5.
Water Res ; 157: 258-268, 2019 Jun 15.
Article En | MEDLINE | ID: mdl-30959329

High-frequency sensor measurements enable calculation of continuous autotrophic nitrate uptake rate based on its intrinsic relationship with gross primary production (GPP). The spatiotemporally available data offer prospects to advance process understandings across scales. We used continuous 15-min data (2011-2015) from a forest upstream reach and an agricultural downstream reach of the Selke River, Germany. Based on the high-frequency data, we developed a parsimonious approach for regionalizing the autotrophic uptake rate, considering effects of global radiation and riparian shading. For networked modeling, we integrated this approach into the fully distributed mesoscale hydrological nitrate model (mHM-Nitrate). Daily GPP-based uptake rate calculations showed distinct seasonal patterns and ranges in the agricultural and forest streams (mean values were 80.9 and 15.5 mgNm-2d-1, respectively). Validation in the two streams showed acceptable performance (R2 = 0.47 and 0.45, respectively) and spatial transferability of the regionalization approach, given its parsimony. Networked modeling results showed high spatiotemporal variability in nitrate transport and uptake throughout the river network. The magnitude of gross uptake increased, whereas uptake efficiency decreased significantly along stream order. Longitudinal analysis in the main stem of the Selke River revealed that riparian shading and inter-annual hydrochemical variations strongly influenced daily dynamics of the uptake efficiency. This study provides a parsimonious and transferable procedure for regionalizing in-stream autotrophic nitrate uptake based on high-frequency data at reach scale. Integrating this approach in the mHM-Nitrate model allows detailed nitrate transport and in-stream uptake processes to be investigated throughout river networks.


Environmental Monitoring , Rivers , Germany , Hydrology , Nitrates
6.
Sci Total Environ ; 697: 134145, 2019 Dec 20.
Article En | MEDLINE | ID: mdl-32380617

We employed the well-established Horton-Strahler, hierarchical, stream-order (ω) scheme to investigate scaling of nutrient loads (P and N) from ~845 wastewater treatment plants (WWTPs) distributed along the river network in urbanized Weser River, the largest national basin in Germany (~46K km2; ~8.4 million population). We estimated hydrologic and water quality impacts at the reach- and basin-scales, at two steady river discharge conditions (median flow, QR50; low-flow, QR90). Of the five WWTPs class-sizes (1 ≤ k ≤ 5), ~68% discharge to small low-order streams (ω < 3). We found large variations in capacity to dilute WWTP nutrient loads because of variability in (1) treated wastewater discharge (QU) within and among different class-sizes, and (2) river discharge (QR) within low-order streams (ω < 3) resulting from differences in drainage areas. For QR50, reach-scale water quality impairment assessed by nutrient concentration was likely at 136 (~16%) locations for P and 15 locations (~2%) for N. About 90% of these locations were lower-order streams (ω < 3). At QR50 and only with dilution, basin-scale cumulative nutrient loads from multiple upstream WWTPs increase impaired locations to 266 (~32% of total) for P. Considering in-stream uptake decreased P-impaired streams to 225 (~27%), suggesting the dominant role of dilution in the Weser River basin. Role of in-stream uptake diminished along the flow paths, while dilution in larger streams (4 ≤ ω ≤ 7) minimizes the impact of WWTP loads. Under QR90 conditions [(QR50/QR90) ~ 2.5], water quality impaired locations will likely double for the basin-scale analyses. Long-term water quality data suggested that diffuse sources are the primary contributors for water quality impairments in large streams. Our data-modeling synthesis approach is transferable to other urbanized river basins and extends understanding of point source impacts on water quality across spatial scales.

8.
Glob Chang Biol ; 23(5): 1891-1901, 2017 05.
Article En | MEDLINE | ID: mdl-27614066

Reductions in emissions have successfully led to a regional decline in atmospheric nitrogen depositions over the past 20 years. By analyzing long-term data from 110 mountainous streams draining into German drinking water reservoirs, nitrate concentrations indeed declined in the majority of catchments. Furthermore, our meta-analysis indicates that the declining nitrate levels are linked to the release of dissolved iron to streams likely due to a reductive dissolution of iron(III) minerals in riparian wetland soils. This dissolution process mobilized adsorbed compounds, such as phosphate, dissolved organic carbon and arsenic, resulting in concentration increases in the streams and higher inputs to receiving drinking water reservoirs. Reductive mobilization was most significant in catchments with stream nitrate concentrations <6 mg L-1 . Here, nitrate, as a competing electron acceptor, was too low in concentration to inhibit microbial iron(III) reduction. Consequently, observed trends were strongest in forested catchments, where nitrate concentrations were unaffected by agricultural and urban sources and which were therefore sensitive to reductions of atmospheric nitrogen depositions. We conclude that there is strong evidence that the decline in nitrogen deposition toward pre-industrial conditions lowers the redox buffer in riparian soils, destabilizing formerly fixed problematic compounds, and results in serious implications for water quality.


Carbon , Environmental Monitoring , Nitrogen , Rivers , Ferric Compounds , Germany , Industry , Phosphates , Water Supply
9.
Environ Monit Assess ; 187(7): 432, 2015 Jul.
Article En | MEDLINE | ID: mdl-26077023

As benthic biofilms mediate essential functions in stream ecosystems (e.g., carbon flux, storage of nutrients and other substances), the element-specific regulation of the biofilm composition is of great interest. We tested whether (1) the elemental composition of biofilms is related to that of the water column and (2) there are different accumulation patterns from the dissolved phase (adsorption) and the particulate phase (incorporation of suspended matter). We analysed biomass parameters, nutrients and metals in biofilms and surface waters at 28 sites within a stream network (Bode catchment, Germany). Algal biomass in biofilms was dominated by diatoms. The P/C ratio in biofilms was positively related to total phosphorus of surface water (and to the proportion of agricultural area in the catchment) indicating phosphorus limitation of biofilms, whereas the N/C ratio was not related to nitrate levels of surface water, and neither the P/C nor the N/C ratio to the concentration of dissolved organic carbon (DOC) of surface water. Biofilms were enriched in metals compared to their concentrations in water. The metals in biofilms were positively related to the concentration of dissolved metals in surface water for iron and strontium (but not for manganese, copper, zinc, arsenic or lead) and to the concentrations of particle-associated metals of surface waters for strontium and lead. Manganese and arsenic were the metals with a negative effect on the biomasses of biofilm diatoms and cyanobacteria. Overall, we observed element-specific accumulation patterns in biofilms with selected elements being related to the water column while others were probably subject to biofilm-internal processes.


Biofilms , Chlorophyta/chemistry , Cyanobacteria/chemistry , Diatoms/chemistry , Metals, Heavy/analysis , Rivers/microbiology , Adsorption , Arsenic/analysis , Ecosystem , Elements , Environmental Monitoring , Germany , Metals/analysis , Nitrates/analysis , Particulate Matter , Phosphorus/analysis , Rivers/chemistry , Water/analysis , Water Pollutants, Chemical/analysis , Zinc/analysis
10.
Environ Monit Assess ; 185(11): 9221-36, 2013 Nov.
Article En | MEDLINE | ID: mdl-23780728

The Bode catchment (Germany) shows strong land use gradients from forested parts of the National Park (23% of total land cover) to agricultural (70%) and urbanised areas (7%). It is part of the Terrestrial Environmental Observatories of the German Helmholtz association. We performed a biogeochemical analysis of the entire river network. Surface water was sampled at 21 headwaters and at ten downstream sites, before (in early spring) and during the growing season (in late summer). Many parameters showed lower concentrations in headwaters than in downstream reaches, among them nutrients (ammonium, nitrate and phosphorus), dissolved copper and seston dry mass. Nitrate and phosphorus concentrations were positively related to the proportion of agricultural area within the catchment. Punctual anthropogenic loads affected some parameters such as chloride and arsenic. Chlorophyll a concentration and total phosphorus in surface waters were positively related. The concentration of dissolved organic carbon (DOC) was higher in summer than in spring, whereas the molecular size of DOC was lower in summer. The specific UV absorption at 254 nm, indicating the content of humic substances, was higher in headwaters than in downstream reaches and was positively related to the proportion of forest within the catchment. CO2 oversaturation of the water was higher downstream compared with headwaters and was higher in summer than in spring. It was correlated negatively with oxygen saturation and positively with DOC concentration but negatively with DOC quality (molecular size and humic content). A principle component analysis clearly separated the effects of site (44%) and season (15%), demonstrating the strong effect of land use on biogeochemical parameters.


Environmental Monitoring , Rivers/chemistry , Water Pollutants, Chemical/analysis , Agriculture , Carbon/analysis , Chlorophyll/analysis , Chlorophyll A , Germany , Humic Substances/analysis , Nitrates/analysis , Nitrogen/analysis , Phosphorus/analysis , Seasons
11.
Environ Sci Technol ; 46(10): 5511-8, 2012 May 15.
Article En | MEDLINE | ID: mdl-22524193

Elevated concentrations of dissolved organic matter (DOM) such as humic substances in raw water pose significant challenges during the processing of the commercial drinking water supplies. This is a relevant issue in Saxony, Central East Germany, and many other regions worldwide, where drinking water is produced from raw waters with noticeable presence of chromophoric DOM (CDOM), which is assumed to originate from forested watersheds in spring regions of the catchment area. For improved comprehension of DOM molecular composition, the seasonal and spatial variations of humic-like fluorescence and elemental formulas in the catchment area of the Muldenberg reservoir were recorded by excitation emission matrix fluorescence (EEMF) and ultrahigh-resolution mass spectrometry (FT-ICR-MS). The Spearman rank correlation was applied to link the EEMF intensities with exact molecular formulas and their corresponding relative mass peak abundances. Thereby, humic-like fluorescence could be allocated to the pool of oxygen-rich and relatively unsaturated components with stoichiometries similar to those of tannic acids, which are suspected to have a comparatively high disinfection byproduct formation potential associated with the chlorination of raw water. Analogous relationships were established for UV absorption at 254 nm (UV(254)) and dissolved organic carbon (DOC) and compared to the EEMF correlation.


Drinking Water/chemistry , Models, Chemical , Organic Chemicals/analysis , Spectrometry, Fluorescence/methods , Water Movements , Carbon/analysis , Elements , Germany , Humic Substances/analysis , Rivers/chemistry , Seasons , Solubility , Statistics, Nonparametric , Ultraviolet Rays
...