Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 12(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275401

RESUMEN

Investigating macrophage plasticity emerges as a promising strategy for promoting tissue regeneration and can be exploited by regulating the transient receptor potential vanilloid 4 (TRPV4) channel. The TRPV4 channel responds to various stimuli including mechanical, chemical, and selective pharmacological compounds. It is well documented that treating cells such as epithelial cells and fibroblasts with a TRPV4 agonist enhances the Ca2+ influx to the cells, which leads to secretion of pro-inflammatory cytokines, while a TRPV4 antagonist reduces both Ca2+ influx and pro-inflammatory cytokine secretion. In this work, we investigated the effect of selective TRPV4 modulator compounds on U937-differentiated macrophages encapsulated within three-dimensional (3D) matrices. Despite offering a more physiologically relevant model than 2D cultures, pharmacological treatment of macrophages within 3D collagen matrices is largely overlooked in the literature. In this study, pro-inflammatory macrophages were treated with an agonist, 500 nM of GSK1016790A (TRPV4(+)), and an antagonist, 10 mM of RN-1734 (TRPV4(-)), to elucidate the modulation of the TRPV4 channel at both cellular and extracellular levels. To evaluate macrophage phenotypic alterations within 3D collagen matrices following TRPV4 modulator treatment, we employed structural techniques (SEM, Masson's trichrome, and collagen hybridizing peptide (CHP) staining), quantitative morphological measures for phenotypic assessment, and genotypic methods such as quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). Our data reveal that pharmacological modulation of the macrophage TRPV4 channel alters the cytoskeletal structure of macrophages and influences the 3D structure encapsulating them. Moreover, we proved that treating macrophages with a TRPV4 agonist and antagonist enhances the expression of pro- and anti-inflammatory genes, respectively, leading to the upregulation of surface markers CD80 and CD206. In the TRPV4(-) group, the CD206 gene and CD206 surface marker were significantly upregulated by 9- and 2.5-fold, respectively, compared to the control group. These findings demonstrate that TRPV4 modulation can be utilized to shift macrophage phenotype within the 3D matrix toward a desired state. This is an innovative approach to addressing inflammation in musculoskeletal tissues.

2.
Tissue Eng Part A ; 30(7-8): 314-329, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37725574

RESUMEN

Mechano-rehabilitation, also known as mechanotherapy, represents the forefront of noninvasive treatment for musculoskeletal (MSK) tissue disorders, encompassing conditions affecting tendons, cartilage, ligaments, and muscles. Recent emphasis has underscored the significance of macrophage presence in the healing of MSK tissues. However, a considerable gap still exists in comprehending how mechanical strains associated with mechanotherapy impact both the naïve and pro-inflammatory macrophage phenotypes within the three-dimensional (3D) tissue matrix, as well as whether the shift in macrophage phenotype is contingent on the mechanical strains inherent to mechanotherapy. In this study, we delineated alterations in mechano-adaptation and polarization of both naive and M1 macrophages within 3D matrices, elucidating their response to varying degrees of mechanical strain exposure (3%, 6%, and 12%). To evaluate macrophage mechano-adaptation and mechano-sensitivity within 3D collagen matrices under mechanical loading, we employed structural techniques (scanning electron microscopy, histology), quantitative morphological measures for phenotypic assessment, and genotypic methods such as quantitative real-time polymerase chain reaction. Our data reveal that the response of macrophages to mechanical loading is not only contingent on their specific sub-phenotype but also varies with the amplitude of mechanical strain. Notably, although supra-mechanical loading (12% strain) was requisite to induce a phenotypic shift in naive (M0) macrophages, as little as 3% mechanical strain proved sufficient to prompt phenotypic alterations in pro-inflammatory (M1) macrophages. These findings pave the way for leveraging the macrophage mechanome in customized and targeted applications of mechanical strain within the mechano-therapeutic framework. Considering the prevalence of MSK tissue injuries and their profound societal and economic implications, the development of well-informed and effective clinical mechanotherapy modalities for MSK tissue healing becomes an imperative endeavor. Impact statement Mechanotherapy is a primary noninvasive treatment for musculoskeletal (MSK) tissue injuries, but the effect of mechanical strain on macrophage phenotypes is not fully understood. A recent study found that macrophage response to mechanical loading is both sub-phenotype specific and amplitude-dependent, with even small strains enough to induce phenotypic changes in pro-inflammatory macrophages. These findings could pave the way for using macrophage mechanome in targeted mechanotherapy applications for better MSK tissue healing.


Asunto(s)
Macrófagos , Sistema Musculoesquelético , Cicatrización de Heridas , Colágeno/farmacología , Fenotipo
3.
Tissue Eng Part A ; 29(21-22): 579-593, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37639358

RESUMEN

In periodontitis, the bone remodeling process is disrupted by the prevalent involvement of bacteria-induced proinflammatory macrophage cells and their interaction with osteoblast cells residing within the infected bone tissue. The complex interaction between the cells needs to be deciphered to understand the dominant player in tipping the balance from osteogenesis to osteoclastogenesis. Yet, only a few studies have examined the crosstalk interaction between osteoblasts and macrophages using biomimetic three-dimensional (3D) tissue-like matrices. In this study, we created a cell-laden 3D tissue analog to study indirect crosstalk between these two cell types and their direct synergistic effect when cultured on a 3D scaffold. The cell-specific role of osteoclast differentiation was investigated through osteoblast- and proinflammatory macrophage-specific feedback studies. The results suggested that when macrophages were exposed to osteoblasts-derived conditioned media from the mineralized matrix, the M1 macrophages tended to maintain their proinflammatory phenotype. Further, when osteoblasts were exposed to secretions from proinflammatory macrophages, they demonstrated elevated receptor activator of nuclear factor-κB ligand (RANKL) expression and decreased alkaline phosphate (ALP) activities compared to osteoblasts exposed to only osteogenic media. In addition, the upregulation of tumor necrosis factor-alpha (TNF-α) and c-Fos in proinflammatory macrophages within the 3D matrix indirectly increased the RANKL expression and reduced the ALP activity of osteoblasts, promoting osteoclastogenesis. The contact coculturing with osteoblast and proinflammatory macrophages within the 3D matrix demonstrated that the proinflammatory markers (TNF-α and interleukin-1ß) expressions were upregulated. In contrast, anti-inflammatory markers (c-c motif chemokine ligand 18 [CCL18]) were downregulated, and osteoclastogenic markers (TNF receptor associated factor 6 [TRAF6] and acid phosphatase 5, tartrate resistant [ACP5]) were unchanged. The data suggested that the osteoblasts curbed the osteoclastogenic differentiation of macrophages while macrophages still preserved their proinflammatory lineages. The osteoblast within the 3D coculture demonstrated increased ALP activity and did not express RANKL significantly different than the osteoblast cultured within a 3D collagen matrix without macrophages. Contact coculturing has an anabolic effect on bone tissue in a bacteria-derived inflammatory environment.


Asunto(s)
Osteoclastos , Periodontitis , Humanos , Factor de Necrosis Tumoral alfa/farmacología , Osteoblastos/metabolismo , Macrófagos/metabolismo , Osteogénesis , Diferenciación Celular , Periodontitis/metabolismo , Ligando RANK/metabolismo , Ligando RANK/farmacología
4.
Biomed Res Int ; 2022: 7230354, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35434125

RESUMEN

There is a clear clinical need for efficient cartilage healing strategies for treating cartilage defects which burdens millions of patients physically and financially. Different strategies including microfracture technique, osteochondral transfer, and scaffold-based treatments have been suggested for curing cartilage injuries. Although some improvements have been achieved in several facets, current treatments are still less than satisfactory. Recently, different hydrogel-based biomaterials have been suggested as a therapeutic candidate for cartilage tissue regeneration due to their biocompatibility, high water content, and tunability. Specifically, magnetic hydrogels are becoming more attractive due to their smart response to magnetic fields remotely. We seek to outline the context-specific regenerative potential of magnetic hydrogels for cartilage tissue repair. In this review, first, we explained conventional techniques for cartilage repair and then compared them with new scaffold-based approaches. We illustrated various hydrogels used for cartilage regeneration by highlighting the magnetic hydrogels. Also, we gathered in vitro and in vivo studies of how magnetic hydrogels promote chondrogenesis as well as studied the biological mechanism which is responsible for cartilage repair due to the application of magnetic hydrogel.


Asunto(s)
Enfermedades de los Cartílagos , Cartílago Articular , Enfermedades de los Cartílagos/terapia , Cartílago Articular/lesiones , Condrogénesis , Humanos , Hidrogeles/uso terapéutico , Fenómenos Magnéticos , Ingeniería de Tejidos/métodos
5.
Langmuir ; 37(29): 8847-8854, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34259525

RESUMEN

A new magnetic nanocomposite with a statistical star polymer structure was designed and synthesized. Nanocomposite fabrication is based on the polymerization of aromatic polyamide chains on the surface of functionalized magnetic copper ferrite nanoparticles (CuFe2O4 MNPs). This magnetic nanostructure was characterized by several analysis methods. All the analytical methods used, for instance, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetric, vibrating-sample magnetometer, and scanning electron microscopy (SEM), confirmed the formation of polyamide chains. The obtained images from SEM imaging showed a unique nanoflower morphology which was the proper orientation results of synthesized nanoplates. Finally, the magnetic nanostructure showed a good potential for hyperthermia applications, with a maximum specific absorption rate of 7 W/g for 1 mg/mL of the sample under a magnetic field in different frequencies (100, 200, 300, and 400 MHz) and 5 to 20 min time intervals.


Asunto(s)
Cobre , Nanopartículas de Magnetita , Compuestos Férricos , Humanos , Hipertermia , Fenómenos Magnéticos , Nylons , Espectroscopía Infrarroja por Transformada de Fourier
6.
Curr J Neurol ; 19(3): 98-102, 2020 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38011389

RESUMEN

Background: Multiple sclerosis (MS) is one of the most common autoimmune diseases worldwide and various autoimmune comorbidities are reported with MS. The objective of this study is to estimate the prevalence of the autoimmune diseases' comorbidity in patients with MS. Methods: In this cross-sectional study, we investigated a group of patients with MS in terms of age, gender, duration of MS, presence of simultaneous autoimmune diseases, such as Graves' disease, Hashimoto's thyroiditis, type 1 diabetes mellitus (DM), and systemic lupus erythematous (SLE). Results: This study included 1215 patients with MS, of which 70.8% were women. The mean age of participants was 33.70 ± 27.63 years. 55 patients (4.5%) had at least one autoimmune disease. The most common comorbidity was for Hashimoto's thyroiditis (30 patients). The frequency of simultaneous autoimmune disease was higher in women. Mean age (P = 0.01), mean duration of MS (P = 0.03), and mean age on MS diagnosis (P = 0.02) were significantly higher in simultaneous MS and other autoimmune diseases. Conclusion: Our study revealed that the probability of autoimmune diseases co-occurrence in patients with MS could be higher in older patients, in longer duration of disease, and also in patients with higher age at time of MS diagnosis.

7.
J Med Signals Sens ; 10(4): 267-273, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33575199

RESUMEN

BACKGROUND: Intima, media, and adventitia are three layers of arteries. They have different structures and different mechanical properties. Damage to intima layer of arteries leads to an inflammatory response, which is usually the reason for atherosclerosis plaque formation. Atherosclerosis plaques mainly consist of smooth muscle cells and calcium. However, plaque geometry and mechanical properties change during time. Blood flow is the source of biomechanical stress to the plaques. Maximum stress that atherosclerosis plaque can burden before its rupture depends on fibrous cap thickness, lipid core, calcification, and artery stenosis. When atherosclerotic plaque ruptures, the blood would be in contact with coagulation factors. That is why plaque rupture is one of the main causes of fatality. METHOD: In this article, the coronary artery was modeled by ANSYS. First, fibrous cap thickness was increased from 40 µm to 250 µm by keeping other parameters constant. Then, the lipid pool percentage was incremented from 10% to 90% by keeping other parameters unchanged. Furthermore, for investigating the influence of calcium in plaque vulnerability, calcium was modeled in both agglomerated and microcalcium form. RESULTS: It is proved that atherosclerosis plaque stress decreases exponentially as cap thickness increases. Larger lipid pool leads to more vulnerable plaques. In addition, the analysis showed maximum plaque stress usually increases in calcified plaque as compared with noncalcified plaque. CONCLUSION: The plaque stress is dependent on whether calcium is agglomerated near the lumen or far from it. However, in both cases, the deposition of more calcium in calcified plaque reduces maximum plaque stress.

8.
J Med Signals Sens ; 7(3): 170-177, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28840118

RESUMEN

BACKGROUND: After total hip arthroplasty, there would be some problems for the patients. Implant loosening is one of the significant problems which results in thigh pain and even revision surgery. Difference between Young's modulus of bone-metal is the cause of stress shielding, atrophy, and subsequent implant loosening. MATERIALS AND METHODS: In this paper, femoral stem stiffness is reduced by novel biomechanical and biomaterial design which includes using proper design parameters, coating it with porous surface, and modeling the sketch by the software. Parametric design of femoral stem is done on the basis of clinical reports. RESULTS: Optimized model for femoral stem is proposed. Curved tapered stem with trapezoidal cross-section and particular neck and offset is designed. Fully porous surface is suggested. Moreover, Designed femoral stem analysis showed the Ti6Al4V stem which is covered with layer of 1.5 mm in thickness and 50% of porosity is as stiff as 77 GPa that is 30% less than the stem without any porosity. Porous surface of designed stem makes it fix biologically; thus, prosthesis loosening probability decreases. CONCLUSION: By optimizing femoral stem geometry (size and shape) and also making a porous surface, which had an intermediate stiffness of bone and implant, a more efficient hip joint prosthesis with more durability fixation was achieved due to better stress transmission from implant to the bone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...