Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cereb Cortex ; 27(4): 2640-2651, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27073215

RESUMEN

Dendritic extension and synaptogenesis proceed at high rates in rat hippocampus during early postnatal life but markedly slow during the third week of development. The reasons for the latter, fundamental event are poorly understood. Here, we report that levels of phosphorylated (inactive) cofilin, an actin depolymerizing factor, decrease by 90% from postnatal days (pnds) 10 to 21. During the same period, levels of total and phosphorylated Arp2, which nucleates actin branches, increase. A search for elements that could explain the switch from inactive to active cofilin identified reductions in ß1 integrin, TrkB, and LIM domain kinase 2b, upstream proteins that promote cofilin phosphorylation. Moreover, levels of slingshot 3, which dephosphorylates cofilin, increase during the period in which growth slows. Consistent with the cofilin results, in situ phalloidin labeling of F-actin demonstrated that spines and dendrites contained high levels of dynamic actin filaments during Week 2, but these fell dramatically by pnd 21. The results suggest that the change from inactive to constitutively active cofilin leads to a loss of dynamic actin filaments needed for process extension and thus the termination of spine formation and synaptogenesis. The relevance of these events to the emergence of memory-related synaptic plasticity is described.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Animales , Western Blotting , Inmunohistoquímica , Inmunoprecipitación , Masculino , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley
2.
Neuropsychopharmacology ; 41(11): 2723-32, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27272766

RESUMEN

Estradiol (E2) perfusion rapidly increases the strength of fast excitatory transmission and facilitates long-term potentiation in the hippocampus, two effects likely related to its memory-enhancing properties. Past studies showed that E2's facilitation of transmission involves activation of RhoA signaling leading to actin polymerization in dendritic spines. Here we report that brief exposure of adult male hippocampal slices to 1 nM E2 increases the percentage of postsynaptic densities associated with high levels of immunoreactivity for activated forms of the BDNF receptor TrkB and ß1-integrins, two synaptic receptors that engage actin regulatory RhoA signaling. The effects of E2 on baseline synaptic responses were unaffected by pretreatment with the TrkB-Fc scavenger for extracellular BDNF or TrkB antagonism, but were eliminated by neutralizing antisera for ß1-integrins. E2 effects on synaptic responses were also absent in conditional ß1-integrin knockouts, and with inhibition of matrix metalloproteinases, extracellular enzymes that generate integrin ligands. We propose that E2, acting through estrogen receptor-ß, transactivates synaptic TrkB and ß1-integrin, and via mechanisms dependent on integrin activation and signaling, reversibly reorganizes the spine cytoskeleton and thereby enhances synaptic responses in adult hippocampus.


Asunto(s)
Estrógenos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/citología , Integrina beta1/metabolismo , Integrinas/metabolismo , Neuronas/efectos de los fármacos , Animales , Animales Recién Nacidos , Benzodioxoles/farmacología , Dipéptidos/farmacología , Homólogo 4 de la Proteína Discs Large , Moduladores de los Receptores de Estrógeno/farmacología , Femenino , Regulación de la Expresión Génica/genética , Guanilato-Quinasas/metabolismo , Integrina beta1/genética , Masculino , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Fenilalanina/análogos & derivados , Fenilalanina/farmacología , Piperidinas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Quinolinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Estrógenos/metabolismo , Tiofenos/farmacología
3.
Cereb Cortex ; 25(2): 516-27, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24046080

RESUMEN

Fragile X Syndrome (FXS) and the Fmr1 knockout (KO) mouse model of this disorder exhibit abnormal dendritic spines in neocortex, but the degree of spine disturbances in hippocampus is not clear. The present studies tested if the mutation influences dendritic branching and spine measures for CA1 pyramidal cells in Fmr1 KO and wild-type (WT) mice provided standard or enriched environment (EE) housing. Automated measures from 3D reconstructions of green fluorescent protein (GFP)-labeled cells showed that spine head volumes were ∼ 40% lower in KOs when compared with WTs in both housing conditions. With standard housing, average spine length was greater in KOs versus WTs but there was no genotype difference in dendritic branching, numbers of spines, or spine length distribution. However, with EE rearing, significant effects of genotype emerged including greater dendritic branching in WTs, greater spine density in KOs, and greater numbers of short thin spines in KOs when compared with WTs. Thus, EE rearing revealed greater effects of the Fmr1 mutation on hippocampal pyramidal cell morphology than was evident with standard housing, suggesting that environmental enrichment allows for fuller appreciation of the impact of the mutation and better representation of abnormalities likely to be present in human FXS.


Asunto(s)
Espinas Dendríticas/patología , Ambiente , Síndrome del Cromosoma X Frágil/patología , Síndrome del Cromosoma X Frágil/terapia , Hipocampo/patología , Células Piramidales/patología , Animales , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Genotipo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Vivienda para Animales , Imagenología Tridimensional , Inmunohistoquímica , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal
4.
J Neurosci ; 34(8): 3033-41, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24553943

RESUMEN

Recent work showed that unsupervised learning of a complex environment activates synaptic proteins essential for the stabilization of long-term potentiation (LTP). The present study used automated methods to construct maps of excitatory synapses associated with high concentrations of one of these LTP-related proteins [CaMKII phosphorylated at T286/287, (pCaMKII)]. Labeling patterns across 42 sampling zones covering entire cross sections through rostral hippocampus were assessed for two groups of rats that explored a novel two-room arena for 30 min, with or without a response contingency involving mildly aversive cues. The number of pCaMKII-immunopositive (+) synapses was highly correlated between the two groups for the 21 sampling zones covering the dentate gyrus, CA3c/hilus, and apical dendrites of field CA1, but not for the remainder of the cross section. The distribution of pCaMKII+ synapses in the large uncorrelated segment differed markedly between the groups. Subtracting home-cage values removed high scores (i.e., sampling zones with a high percentage of pCaMKII+ contacts) in the negative contingency group, but not in the free-exploration animals. Three sites in the latter had values that were markedly elevated above other fields. These mapping results suggest that encoding of a form of memory that is dependent upon rostral hippocampus reliably occurs at high levels in discrete anatomical zones, and that this regionally differentiated response is blocked when animals are inhibited from freely exploring the environment by the introduction of a mildly aversive stimulus.


Asunto(s)
Hipocampo/fisiología , Aprendizaje/fisiología , Potenciación a Largo Plazo/fisiología , Sinapsis/fisiología , Animales , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Señales (Psicología) , Conducta Exploratoria/fisiología , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Masculino , Aprendizaje por Laberinto/fisiología , Actividad Motora/fisiología , Ratas , Ratas Long-Evans , Programas Informáticos , Percepción Espacial/fisiología , Sinapsis/enzimología
5.
J Neurosci ; 33(33): 13441-8, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23946402

RESUMEN

Multiple lines of evidence suggest that disturbances in excitatory transmission contribute to depression. Whether these defects involve the number, size, or composition of glutamatergic contacts is unclear. This study used recently introduced procedures for fluorescence deconvolution tomography in a well-studied rat model of congenital depression to characterize excitatory synapses in layer I of infralimbic cortex, a region involved in mood disorders, and of primary somatosensory cortex. Three groups were studied: (1) rats bred for learned helplessness (cLH); (2) rats resistant to learned helplessness (cNLH); and (3) control Sprague Dawley rats. In fields within infralimbic cortex, cLH rats had the same numerical density of synapses, immunolabeled for either the postsynaptic density (PSD) marker PSD95 or the presynaptic protein synaptophysin, as controls. However, PSD95 immunolabeling intensities were substantially lower in cLH rats, as were numerical densities of synapse-sized clusters of the AMPA receptor subunit GluA1. Similar but less pronounced differences (comparable numerical densities but reduced immunolabeling intensity for PSD95) were found in the somatosensory cortex. In contrast, non-helpless rats had 25% more PSDs than either cLH or control rats without any increase in synaptophysin-labeled terminal frequency. Compared with controls, both cLH and cNLH rats had fewer GABAergic contacts. These results indicate that congenital tendencies that increase or decrease depression-like behavior differentially affect excitatory synapses.


Asunto(s)
Corteza Cerebral/patología , Trastorno Depresivo Mayor/patología , Sinapsis/patología , Animales , Modelos Animales de Enfermedad , Desamparo Adquirido , Inmunohistoquímica , Masculino , Ratas , Ratas Sprague-Dawley
6.
Nat Neurosci ; 16(5): 552-61, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23525042

RESUMEN

Recent exome sequencing studies have implicated polymorphic Brg1-associated factor (BAF) complexes (mammalian SWI/SNF chromatin remodeling complexes) in several human intellectual disabilities and cognitive disorders. However, it is currently unknown how mutations in BAF complexes result in impaired cognitive function. Postmitotic neurons express a neuron-specific assembly, nBAF, characterized by the neuron-specific subunit BAF53b. Mice harboring selective genetic manipulations of BAF53b have severe defects in long-term memory and long-lasting forms of hippocampal synaptic plasticity. We rescued memory impairments in BAF53b mutant mice by reintroducing BAF53b in the adult hippocampus, which suggests a role for BAF53b beyond neuronal development. The defects in BAF53b mutant mice appeared to derive from alterations in gene expression that produce abnormal postsynaptic components, such as spine structure and function, and ultimately lead to deficits in synaptic plasticity. Our results provide new insight into the role of dominant mutations in subunits of BAF complexes in human intellectual and cognitive disorders.


Asunto(s)
Actinas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica/genética , Plasticidad Neuronal/fisiología , Neuronas/citología , Neuronas/metabolismo , Reconocimiento en Psicología/fisiología , Factores Despolimerizantes de la Actina/metabolismo , Actinas/genética , Animales , Proteínas Cromosómicas no Histona/genética , Condicionamiento Psicológico/fisiología , Proteínas de Unión al ADN/genética , Espinas Dendríticas/fisiología , Espinas Dendríticas/ultraestructura , Dependovirus/genética , Homólogo 4 de la Proteína Discs Large , Potenciales Postsinápticos Excitadores/genética , Miedo/fisiología , Guanilato-Quinasas/metabolismo , Hipocampo/citología , Técnicas In Vitro , Aprendizaje por Laberinto/fisiología , Proteínas de la Membrana/metabolismo , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Plasticidad Neuronal/genética , Factores de Tiempo , Transcriptoma
7.
Neuropharmacology ; 64: 27-36, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22820276

RESUMEN

The fundamental observation that the temporal spacing of learning episodes plays a critical role in the efficiency of memory encoding has had little effect on either research on long-term potentiation (LTP) or efforts to develop cognitive enhancers. Here we review recent findings describing a spaced trials phenomenon for LTP that appears to be related to recent evidence that plasticity thresholds differ between synapses in the adult hippocampus. Results of tests with one memory enhancing drug suggest that the compound potently facilitates LTP via effects on 'high threshold' synapses and thus alters the temporally extended timing rules. Possible implications of these results for our understanding of LTP substrates, neurobiological contributors to the distributed practice effect, and the consequences of memory enhancement are discussed. This article is part of a Special Issue entitled 'Cognitive Enhancers'.


Asunto(s)
Plasticidad Neuronal/efectos de los fármacos , Nootrópicos/farmacología , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Cognición/efectos de los fármacos , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/prevención & control , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Potenciación a Largo Plazo/efectos de los fármacos , Memoria/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nootrópicos/uso terapéutico , Sustancias para Mejorar el Rendimiento/farmacología , Sustancias para Mejorar el Rendimiento/uso terapéutico , Sinapsis/metabolismo
8.
J Neurosci ; 32(37): 12854-61, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22973009

RESUMEN

Memory consolidation theory posits that newly acquired information passes through a series of stabilization steps before being firmly encoded. We report here that in rat and mouse, hippocampus cell adhesion receptors belonging to the ß1-integrin family exhibit dynamic properties in adult synapses and that these contribute importantly to a previously unidentified stage of consolidation. Quantitative dual immunofluorescence microscopy showed that induction of long-term potentiation (LTP) by theta burst stimulation (TBS) activates ß1 integrins, and integrin-signaling kinases, at spine synapses in adult hippocampal slices. Neutralizing antisera selective for ß1 integrins blocked these effects. TBS-induced integrin activation was brief (<7 min) and followed by an ∼45 min period during which the adhesion receptors did not respond to a second application of TBS. Brefeldin A, which blocks integrin trafficking to the plasma membrane, prevented the delayed recovery of integrin responses to TBS. ß1 integrin-neutralizing antisera erased LTP when applied during, but not after, the return of integrin responsivity. Similarly, infusions of anti-ß1 into rostral mouse hippocampus blocked formation of long-term, object location memory when started 20 min after learning but not 40 min later. The finding that ß1 integrin neutralization was effective in the same time window for slice and behavioral experiments strongly suggests that integrin recovery triggers a temporally discrete, previously undetected second stage of consolidation for both LTP and memory.


Asunto(s)
Hipocampo/fisiología , Integrina beta1/metabolismo , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Plasticidad Neuronal/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley
9.
Mol Neurobiol ; 46(2): 304-15, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22717988

RESUMEN

Glucocorticoids affect learning and memory but the cellular mechanisms involved are poorly understood. The present studies tested if the stress-responsive glucocorticoid receptor (GR) is present and regulated within dendritic spines, and influences local signaling to the actin cytoskeleton. In hippocampal field CA1, 13 % of synapses contained GR-immunoreactivity. Three-dimensional reconstructions of CA1 dendrites showed that GR aggregates are present in both spine heads and necks. Consonant with evidence that GRα mRNA associates with the translation regulator Fragile X Mental Retardation Protein (FMRP), spine GR levels were rapidly increased by group 1 mGluR activation and reduced in mice lacking FMRP. Treatment of cultured hippocampal slices with the GR agonist dexamethasone rapidly (15-30 min) increased total levels of phosphorylated (p) Cofilin and extracellular signal-regulated kinase (ERK) 1/2, proteins that regulate actin polymerization and stability. Dexamethasone treatment of adult hippocampal slices also increased numbers of PSD95+ spines containing pERK1/2, but reduced numbers of pCofilin-immunoreactive spines. Dexamethasone-induced increases in synaptic pERK1/2 were blocked by the GR antagonist RU-486. These results demonstrate that GRs are present in hippocampal spines where they mediate acute glucocorticoid effects on local spine signaling. Through effects on these actin regulatory pathways, GRs are positioned to exert acute effects on synaptic plasticity.


Asunto(s)
Actinas/metabolismo , Espinas Dendríticas/metabolismo , Receptores de Glucocorticoides/metabolismo , Transducción de Señal , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Animales , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/enzimología , Dexametasona/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Glucocorticoides/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Células Piramidales/citología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinaptosomas/efectos de los fármacos , Sinaptosomas/enzimología , Quinasas p21 Activadas/metabolismo
10.
J Neurosci ; 32(21): 7403-13, 2012 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-22623686

RESUMEN

Stabilization of long-term potentiation (LTP) depends on reorganization of the dendritic spine actin cytoskeleton. The present study tested whether this involves activity-driven effects on the actin-regulatory protein cortactin, and whether such effects are disturbed in the Fmr1 knock-out (KO) model of fragile X syndrome, in which stabilization of both actin filaments and LTP is impaired. LTP induced by theta burst stimulation (TBS) in hippocampal slices from wild-type mice was associated with rapid, broadly distributed, and NMDA receptor-dependent decreases in synapse-associated cortactin. The reduction in cortactin content was blocked by blebbistatin, while basal levels were reduced by nocodazole, indicating that cortactin's movements into and away from synapses are regulated by microtubule and actomyosin motors, respectively. These results further suggest that synapse-specific LTP influences cytoskeletal elements at distant connections. The rapid effects of TBS on synaptic cortactin content were absent in Fmr1 KOs as was evidence for activity-driven phosphorylation of the protein or its upstream kinase, ERK1/2. Phosphorylation regulates cortactin's interactions with actin, and coprecipitation of the two proteins was reduced in the KOs. We propose that, in the KOs, excessive basal phosphorylation of ERK1/2 disrupts its interactions with cortactin, thereby blocking the latter protein's use of actomyosin transport systems. These impairments are predicted to compromise the response of the subsynaptic cytoskeleton to learning-related afferent activity, both locally and at distant sites.


Asunto(s)
Cortactina/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Potenciación a Largo Plazo/fisiología , Sinapsis/metabolismo , Actinas/metabolismo , Animales , Estimulación Eléctrica/métodos , Inhibidores Enzimáticos/farmacología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiología , Técnicas In Vitro , Potenciación a Largo Plazo/genética , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Noqueados , Ratones Mutantes , Nocodazol/farmacología , Fosforilación , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Sinapsis/fisiología , Moduladores de Tubulina/farmacología
11.
Proc Natl Acad Sci U S A ; 109(13): 5121-6, 2012 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-22411798

RESUMEN

The superiority of spaced vs. massed training is a fundamental feature of learning. Here, we describe unanticipated timing rules for the production of long-term potentiation (LTP) in adult rat hippocampal slices that can account for one temporal segment of the spaced trials phenomenon. Successive bouts of naturalistic theta burst stimulation of field CA1 afferents markedly enhanced previously saturated LTP if spaced apart by 1 h or longer, but were without effect when shorter intervals were used. Analyses of F-actin-enriched spines to identify potentiated synapses indicated that the added LTP obtained with delayed theta trains involved recruitment of synapses that were "missed" by the first stimulation bout. Single spine glutamate-uncaging experiments confirmed that less than half of the spines in adult hippocampus are primed to undergo plasticity under baseline conditions, suggesting that intrinsic variability among individual synapses imposes a repetitive presentation requirement for maximizing the percentage of potentiated connections. We propose that a combination of local diffusion from initially modified spines coupled with much later membrane insertion events dictate that the repetitions be widely spaced. Thus, the synaptic mechanisms described here provide a neurobiological explanation for one component of a poorly understood, ubiquitous aspect of learning.


Asunto(s)
Aprendizaje/fisiología , Sinapsis/fisiología , Actinas/metabolismo , Animales , Espinas Dendríticas/fisiología , Técnicas In Vitro , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Polimerizacion , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología , Ritmo Teta/fisiología , Factores de Tiempo
12.
J Neurosci ; 30(33): 10977-84, 2010 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-20720104

RESUMEN

The abnormal spine morphology found in fragile X syndrome (FXS) is suggestive of an error in the signaling cascades that organize the actin cytoskeleton. We report here that physiological activation of the small GTPase Rac1 and its effector p-21 activated kinase (PAK), two enzymes critically involved in actin management and functional synaptic plasticity, is impaired at hippocampal synapses in the Fmr1-knock-out (KO) mouse model of FXS. Theta burst afferent stimulation (TBS) caused a marked increase in the number of synapses associated with phosphorylated PAK in adult hippocampal slices from wild-type, but not Fmr1-KO, mice. Stimulation-induced activation of synaptic Rac1 was also absent in the mutants. The polymerization of spine actin that occurs immediately after theta stimulation appeared normal in mutant slices but the newly formed polymers did not properly stabilize, as evidenced by a prolonged vulnerability to a toxin (latrunculin) that disrupts dynamic actin filaments. Latrunculin also reversed long-term potentiation when applied at 10 min post-TBS, a time point at which the potentiation effect is resistant to interference in wild-type slices. We propose that a Rac>PAK signaling pathway needed for rapid stabilization of activity-induced actin filaments, and thus for normal spine morphology and lasting synaptic changes, is defective in FXS.


Asunto(s)
Síndrome del Cromosoma X Frágil/fisiopatología , Hipocampo/fisiopatología , Neuropéptidos/metabolismo , Transducción de Señal , Sinapsis/fisiología , Quinasas p21 Activadas/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Actinas/metabolismo , Animales , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/fisiología , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Hipocampo/efectos de los fármacos , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Noqueados , Modelos Neurológicos , Multimerización de Proteína/efectos de los fármacos , Multimerización de Proteína/fisiología , Estabilidad Proteica/efectos de los fármacos , Sinapsis/efectos de los fármacos , Proteína de Unión al GTP rac1
13.
J Cell Biol ; 186(1): 85-97, 2009 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-19596849

RESUMEN

The releasable factor adenosine blocks the formation of long-term potentiation (LTP). These experiments used this observation to uncover the synaptic processes that stabilize the potentiation effect. Brief adenosine infusion blocked stimulation-induced actin polymerization within dendritic spines along with LTP itself in control rat hippocampal slices but not in those pretreated with the actin filament stabilizer jasplakinolide. Adenosine also blocked activity-driven phosphorylation of synaptic cofilin but not of synaptic p21-activated kinase (PAK). A search for the upstream origins of these effects showed that adenosine suppressed RhoA activity but only modestly affected Rac and Cdc42. A RhoA kinase (ROCK) inhibitor reproduced adenosine's effects on cofilin phosphorylation, spine actin polymerization, and LTP, whereas a Rac inhibitor did not. However, inhibitors of Rac or PAK did prolong LTP's vulnerability to reversal by latrunculin, a toxin which blocks actin filament assembly. Thus, LTP induction initiates two synaptic signaling cascades: one (RhoA-ROCK-cofilin) leads to actin polymerization, whereas the other (Rac-PAK) stabilizes the newly formed filaments.


Asunto(s)
Potenciación a Largo Plazo , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Adenosina/farmacología , Animales , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Técnica del Anticuerpo Fluorescente , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Modelos Biológicos , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Quinasas p21 Activadas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
14.
Eur J Neurosci ; 27(3): 523-37, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18279306

RESUMEN

The reeler gene encodes Reelin, a secreted glycoprotein that binds to the very-low-density lipoprotein receptor (Vldlr) and apolipoprotein E receptor 2 (Apoer 2), and induces Src- and Fyn-mediated tyrosine phosphorylation of the intracellular adaptor protein Disabled-1 (Dab1). This Reelin-Dab1 signaling pathway regulates neuronal positioning during development. A second Reelin pathway acts through Apoer 2-exon 19 to modulate synaptic plasticity in adult mice. We recently reported positioning errors in reeler dorsal horn laminae I-II and V, and the lateral spinal nucleus. Behavioral correlates of these positioning errors include a decreased mechanical and increased thermal sensitivity in reeler mice. Here we examined mice with deletions or modifications of both the Reelin-Dab1 signaling pathway and the Reelin-Apoer 2-exon 19 pathway on a Vldlr-deficient background. We detected reeler-like dorsal horn positioning errors only in Dab1 mutant and Apoer 2/Vldlr double mutant mice. Although Dab1 mutants, like reeler, showed decreased mechanical and increased thermal sensitivity, neither the single Vldlr or Apoer 2 knockouts, nor the Apoer 2-exon 19 mutants differed in their acute pain sensitivity from controls. However, despite the dramatic alterations in acute 'pain' processing in reeler and Dab1 mutants, the exacerbation of pain processing after tissue injury (hindpaw carrageenan injection) was preserved. Finally, we recapitulated the reeler dorsal horn positioning errors by inhibiting Dab1 phosphorylation in organotypic cultures. We conclude that the Reelin-Dab1 pathway differentially contributes to acute and persistent pain, and that the plasticity associated with the Reelin-Apoer 2-exon 19 pathway is distinct from that which contributes to injury-induced enhancement of 'pain' processing.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Proteínas de la Matriz Extracelular/genética , Proteínas del Tejido Nervioso/genética , Nociceptores/metabolismo , Dolor/genética , Células del Asta Posterior/anomalías , Serina Endopeptidasas/genética , Transducción de Señal/genética , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Movimiento Celular/genética , Exones/genética , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Proteínas Relacionadas con Receptor de LDL , Masculino , Ratones , Ratones Noqueados , Ratones Mutantes Neurológicos , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/genética , Nociceptores/fisiopatología , Técnicas de Cultivo de Órganos , Dolor/metabolismo , Dolor/fisiopatología , Umbral del Dolor/fisiología , Células del Asta Posterior/fisiopatología , Ratas , Ratas Sprague-Dawley , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores de Lipoproteína/genética , Receptores de Lipoproteína/metabolismo , Proteína Reelina , Serina Endopeptidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA