Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 13: 1063051, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056346

RESUMEN

Breast cancer ranks second among the causes of cancer-related deaths in women. In spite of the recent advances achieved in the diagnosis and treatment of breast cancer, further study is required to overcome the risk of cancer resistance to treatment and thereby improve the prognosis of individuals with advanced-stage breast cancer. The existence of a hypoxic microenvironment is a well-known event in the development of mutagenesis and rapid proliferation of cancer cells. Tumor cells, purposefully cause local hypoxia in order to induce angiogenesis and growth factors that promote tumor growth and metastatic characteristics, while healthy tissue surrounding the tumor suffers damage or mutate. It has been found that these settings with low oxygen levels cause immunosuppression and a lack of immune surveillance by reducing the activation and recruitment of tumor infiltrating leukocytes (TILs). The immune system is further suppressed by hypoxic tumor endothelium through a variety of ways, which creates an immunosuppressive milieu in the tumor microenvironment. Non responsiveness of tumor endothelium to inflammatory signals or endothelial anergy exclude effector T cells from the tumor milieu. Expression of endothelial specific antigens and immunoinhibitory molecules like Programmed death ligand 1,2 (PDL-1, 2) and T cell immunoglobulin and mucin-domain containing-3 (TIM-3) by tumor endothelium adds fuel to the fire by inhibiting T lymphocytes while promoting regulatory T cells. The hypoxic microenvironment in turn recruits Myeloid Derived Suppressor Cells (MDSCs), Tumor Associated Macrophages (TAMs) and T regulatory cells (Treg). The structure and function of newly generated blood vessels within tumors, on the other hand, are aberrant, lacking the specific organization of normal tissue vasculature. Vascular normalisation may work for a variety of tumour types and show to be an advantageous complement to immunotherapy for improving tumour access. By enhancing immune response in the hypoxic tumor microenvironment, via immune-herbal therapeutic and immune-nutraceuticals based approaches that leverage immunological evasion of tumor, will be briefly reviewed in this article. Whether these tactics may be the game changer for emerging immunological switch point to attenuate the breast cancer growth and prevent metastatic cell division, is the key concern of the current study.

2.
Sci Transl Med ; 10(432)2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540614

RESUMEN

Anti-vascular endothelial growth factor (VEGF) therapy has failed to improve survival in patients with breast cancer (BC). Potential mechanisms of resistance to anti-VEGF therapy include the up-regulation of alternative angiogenic and proinflammatory factors. Obesity is associated with hypoxic adipose tissues, including those in the breast, resulting in increased production of some of the aforementioned factors. Hence, we hypothesized that obesity could contribute to anti-VEGF therapy's lack of efficacy. We found that BC patients with obesity harbored increased systemic concentrations of interleukin-6 (IL-6) and/or fibroblast growth factor 2 (FGF-2), and their tumor vasculature was less sensitive to anti-VEGF treatment. Mouse models revealed that obesity impairs the effects of anti-VEGF on angiogenesis, tumor growth, and metastasis. In one murine BC model, obesity was associated with increased IL-6 production from adipocytes and myeloid cells within tumors. IL-6 blockade abrogated the obesity-induced resistance to anti-VEGF therapy in primary and metastatic sites by directly affecting tumor cell proliferation, normalizing tumor vasculature, alleviating hypoxia, and reducing immunosuppression. Similarly, in a second mouse model, where obesity was associated with increased FGF-2, normalization of FGF-2 expression by metformin or specific FGF receptor inhibition decreased vessel density and restored tumor sensitivity to anti-VEGF therapy in obese mice. Collectively, our data indicate that obesity fuels BC resistance to anti-VEGF therapy via the production of inflammatory and angiogenic factors.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Interleucina-6/metabolismo , Obesidad/complicaciones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Antineoplásicos/uso terapéutico , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Metformina/uso terapéutico , Ratones , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
3.
Cancer Discov ; 6(8): 852-69, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27246539

RESUMEN

UNLABELLED: It remains unclear how obesity worsens treatment outcomes in patients with pancreatic ductal adenocarcinoma (PDAC). In normal pancreas, obesity promotes inflammation and fibrosis. We found in mouse models of PDAC that obesity also promotes desmoplasia associated with accelerated tumor growth and impaired delivery/efficacy of chemotherapeutics through reduced perfusion. Genetic and pharmacologic inhibition of angiotensin-II type-1 receptor reverses obesity-augmented desmoplasia and tumor growth and improves response to chemotherapy. Augmented activation of pancreatic stellate cells (PSC) in obesity is induced by tumor-associated neutrophils (TAN) recruited by adipocyte-secreted IL1ß. PSCs further secrete IL1ß, and inactivation of PSCs reduces IL1ß expression and TAN recruitment. Furthermore, depletion of TANs, IL1ß inhibition, or inactivation of PSCs prevents obesity-accelerated tumor growth. In patients with pancreatic cancer, we confirmed that obesity is associated with increased desmoplasia and reduced response to chemotherapy. We conclude that cross-talk between adipocytes, TANs, and PSCs exacerbates desmoplasia and promotes tumor progression in obesity. SIGNIFICANCE: Considering the current obesity pandemic, unraveling the mechanisms underlying obesity-induced cancer progression is an urgent need. We found that the aggravation of desmoplasia is a key mechanism of obesity-promoted PDAC progression. Importantly, we discovered that clinically available antifibrotic/inflammatory agents can improve the treatment response of PDAC in obese hosts. Cancer Discov; 6(8); 852-69. ©2016 AACR.See related commentary by Bronte and Tortora, p. 821This article is highlighted in the In This Issue feature, p. 803.


Asunto(s)
Resistencia a Antineoplásicos , Inflamación/etiología , Inflamación/patología , Obesidad/complicaciones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Receptor de Angiotensina Tipo 1/metabolismo , Tejido Adiposo/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Índice de Masa Corporal , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Terapia Combinada , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Fibrosis , Predisposición Genética a la Enfermedad , Humanos , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Obesidad/etiología , Neoplasias Pancreáticas/etiología , Transducción de Señal/efectos de los fármacos , Carga Tumoral , Microambiente Tumoral
4.
Clin Cancer Res ; 22(12): 2993-3004, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-26861455

RESUMEN

PURPOSE: Obesity promotes pancreatic and breast cancer progression via mechanisms that are poorly understood. Although obesity is associated with increased systemic levels of placental growth factor (PlGF), the role of PlGF in obesity-induced tumor progression is not known. PlGF and its receptor VEGFR-1 have been shown to modulate tumor angiogenesis and promote tumor-associated macrophage (TAM) recruitment and activity. Here, we hypothesized that increased activity of PlGF/VEGFR-1 signaling mediates obesity-induced tumor progression by augmenting tumor angiogenesis and TAM recruitment/activity. EXPERIMENTAL DESIGN: We established diet-induced obese mouse models of wild-type C57BL/6, VEGFR-1 tyrosine kinase (TK)-null, or PlGF-null mice, and evaluated the role of PlGF/VEGFR-1 signaling in pancreatic and breast cancer mouse models and in human samples. RESULTS: We found that obesity increased TAM infiltration, tumor growth, and metastasis in pancreatic cancers, without affecting vessel density. Ablation of VEGFR-1 signaling prevented obesity-induced tumor progression and shifted the tumor immune environment toward an antitumor phenotype. Similar findings were observed in a breast cancer model. Obesity was associated with increased systemic PlGF, but not VEGF-A or VEGF-B, in pancreatic and breast cancer patients and in various mouse models of these cancers. Ablation of PlGF phenocopied the effects of VEGFR-1-TK deletion on tumors in obese mice. PlGF/VEGFR-1-TK deletion prevented weight gain in mice fed a high-fat diet, but exacerbated hyperinsulinemia. Addition of metformin not only normalized insulin levels but also enhanced antitumor immunity. CONCLUSIONS: Targeting PlGF/VEGFR-1 signaling reprograms the tumor immune microenvironment and inhibits obesity-induced acceleration of tumor progression. Clin Cancer Res; 22(12); 2993-3004. ©2016 AACR.


Asunto(s)
Neoplasias de la Mama/patología , Macrófagos/metabolismo , Obesidad/patología , Neoplasias Pancreáticas/patología , Factor de Crecimiento Placentario/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Neoplasias de la Mama/inmunología , Dieta Alta en Grasa , Femenino , Glucosa/metabolismo , Humanos , Hipoglucemiantes/farmacología , Macrófagos/inmunología , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Neovascularización Patológica/genética , Obesidad/inmunología , Neoplasias Pancreáticas/inmunología , Factor de Crecimiento Placentario/genética , Pronóstico , Transducción de Señal , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética
5.
PLoS One ; 10(12): e0141392, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26641266

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly desmoplastic tumor with a dismal prognosis for most patients. Fibrosis and inflammation are hallmarks of tumor desmoplasia. We have previously demonstrated that preventing the activation of pancreatic stellate cells (PSCs) and alleviating desmoplasia are beneficial strategies in treating PDAC. Metformin is a widely used glucose-lowering drug. It is also frequently prescribed to diabetic pancreatic cancer patients and has been shown to associate with a better outcome. However, the underlying mechanisms of this benefit remain unclear. Metformin has been found to modulate the activity of stellate cells in other disease settings. In this study, we examine the effect of metformin on PSC activity, fibrosis and inflammation in PDACs. METHODS/RESULTS: In overweight, diabetic PDAC patients and pre-clinical mouse models, treatment with metformin reduced levels of tumor extracellular matrix (ECM) components, in particular hyaluronan (HA). In vitro, we found that metformin reduced TGF-ß signaling and the production of HA and collagen-I in cultured PSCs. Furthermore, we found that metformin alleviates tumor inflammation by reducing the expression of inflammatory cytokines including IL-1ß as well as infiltration and M2 polarization of tumor-associated macrophages (TAMs) in vitro and in vivo. These effects on macrophages in vitro appear to be associated with a modulation of the AMPK/STAT3 pathway by metformin. Finally, we found in our preclinical models that the alleviation of desmoplasia by metformin was associated with a reduction in ECM remodeling, epithelial-to-mesenchymal transition (EMT) and ultimately systemic metastasis. CONCLUSION: Metformin alleviates the fibro-inflammatory microenvironment in obese/diabetic individuals with pancreatic cancer by reprogramming PSCs and TAMs, which correlates with reduced disease progression. Metformin should be tested/explored as part of the treatment strategy in overweight diabetic PDAC patients.


Asunto(s)
Macrófagos/efectos de los fármacos , Metformina/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Células Estrelladas Pancreáticas/efectos de los fármacos , Células Estrelladas Pancreáticas/patología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/metabolismo , Pronóstico , Factor de Transcripción STAT3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
6.
Clin Exp Metastasis ; 29(5): 471-92, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22419013

RESUMEN

Nitric oxide (NO), an uncharged free radical is implicated in various physiological and pathological processes. The present study is an investigation on the effect of NO on proliferation, apoptosis and migration of colon cancer cells. Colon adenocarcinoma cells, WiDr, were used for the in vitro experiments. Tissues from colon adenocarcinoma, adjacent normal and inflammatory tissue and lymph node with metastasis were evaluated for iNOS, MMP-2/9 and Fra-1/Fra-2. NO increases the proliferation of cancer cells and simultaneously prevents apoptosis. Expression of MMP-2/9, RhoB and Rac-1 was enhanced by NO in a time dependent manner. Further, NO increased phosphorylation of ERK1/2 and induced nuclear translocation of Fra-1 and Fra-2. Electrophoretic mobility shift analysis and use of deletion mutant promoter constructs identified role of AP-1 in NO-mediated regulation of MMP-2/9. iNOS, MMP-2/9, Fra-1 and Fra-2 in normal and colon adenocarcinoma tissues were analyzed and it was found that increased expression of these proteins in cancer when compared to normal provides support to our in vitro findings. The study showed that the NO-cGMP-PKG promotes MMP-2/9 expression by activating ERK-1/2 and AP-1. This study reveals the insidious role of NO in imparting tumor aggressiveness.


Asunto(s)
Movimiento Celular , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Western Blotting , Adhesión Celular , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/genética , Ensayo de Cambio de Movilidad Electroforética , Ensayo de Inmunoadsorción Enzimática , Humanos , Sistema de Señalización de MAP Quinasas , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Fosforilación , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Regulación hacia Arriba
7.
Pharmacology ; 89(1-2): 91-8, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22343391

RESUMEN

Aloe emodin (AE), a natural anthraquinone, is reported to have antiproliferative activity in various cancer cell lines. In this study, we analyzed the molecular mechanisms involved in the growth-inhibitory activity of this hydroxyanthraquinone in colon cancer cell, WiDr. In our observation AE inhibited cell proliferation by arresting the cell cycle at the G2/M phase and inhibiting cyclin B1. AE appreciably induced cell death specifically through the induction of apoptosis and by activating caspases 9/6. Apoptotic execution was found to be solely dependent on caspase-6 rather than caspase-3 or caspase-7. This is the first study indicating that the AE induces apoptosis specifically through the activation of caspase-6.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Antraquinonas/farmacología , Antineoplásicos Fitogénicos/farmacología , Apoptosis/fisiología , Caspasa 6/metabolismo , Puntos de Control del Ciclo Celular/fisiología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclina B1/antagonistas & inhibidores , Activación Enzimática/efectos de los fármacos , Humanos
8.
Eur J Pharm Sci ; 45(5): 581-91, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22227305

RESUMEN

Aloe emodin (AE), a natural anthraquinone, is reported to have antiproliferative activity in various cancer cell lines. In this study we analyzed molecular mechanisms involved in the antimigratory and antiangiogenic activity of this hydroxy anthraquinone in colon cancer cell, WiDr. Our results show that a relatively non toxic concentration of AE suppressed the phorbol-12-myristyl-13-acetate (PMA) induced migration and invasion of tumor cells. On analysis for the molecules involved in the migration/invasion, we found AE downregulated mRNA expression and promoter/gelatinolytic activity of Matrix Metalloproteinase (MMP)-2/9, as well as the RhoB expression at gene and protein level. It was also a strong inhibitor of Vascular Endothelial Growth Factor (VEGF) expression, promoter activity and endothelial cell migration/invasion and in vitro angiogenesis. AE suppressed the nuclear translocation and DNA binding of NF-κB, which is an important transcription factor for controlling MMP-2/9 and VEGF gene expression. Taken together these data indicate that AE target multiple molecules responsible for cellular invasion, migration and angiogenesis. Inhibitory effect on angiogenic and metastatic regulatory processes make AE a sensible candidate as a specific blocker of tumor associated events.


Asunto(s)
Antraquinonas/farmacología , Movimiento Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Inhibidores de la Metaloproteinasa de la Matriz , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Proteína de Unión al GTP rhoB/antagonistas & inhibidores , Inhibidores de la Angiogénesis/farmacología , Movimiento Celular/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , ADN/genética , ADN/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , FN-kappa B/antagonistas & inhibidores , FN-kappa B/genética , FN-kappa B/metabolismo , Invasividad Neoplásica , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/genética , Transducción de Señal/efectos de los fármacos , Células Tumorales Cultivadas , Factor A de Crecimiento Endotelial Vascular/genética , Proteína de Unión al GTP rhoB/genética , Proteína de Unión al GTP rhoB/metabolismo
9.
Mol Carcinog ; 51(6): 475-90, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21678498

RESUMEN

Nimbolide, a plant-derived limonoid has been shown to exert its antiproliferative effects in various cell lines. We demonstrate that nimbolide effectively inhibited proliferation of WiDr colon cancer cells through inhibition of cyclin A leading to S phase arrest. It also caused activation of caspase-mediated apoptosis through the inhibition of ERK1/2 and activation of p38 and JNK1/2. Further nimbolide effectively retarded tumor cell migration and invasion through inhibition of metalloproteinase-2/9 (MMP-2/9) expression, both at the mRNA and protein level. It was also a strong inhibitor of VEGF expression, promoter activity, and in vitro angiogenesis. Finally, nimbolide suppressed the nuclear translocation of p65/p50 and DNA binding of NF-κB, which is an important transcription factor for controlling MMP-2/9 and VEGF gene expression.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias del Colon/genética , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Limoninas/farmacología , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , FN-kappa B/metabolismo , Caspasas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/enzimología , Neoplasias del Colon/metabolismo , Ciclina A/antagonistas & inhibidores , Ciclina D1/antagonistas & inhibidores , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Limoninas/química , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Invasividad Neoplásica , Neovascularización Patológica , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , ARN Mensajero/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Afr J Tradit Complement Altern Med ; 6(1): 9-16, 2008 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-20162036

RESUMEN

The present study evaluated the ability of methanolic extract of Centella asiatica (Linn) Urban (Umbelliferae) to induce apoptosis in different cancer cell lines. MCF-7 cells emerged as the most sensitive cell line for in vitro growth inhibitory activity. C. asiatica extract induced apoptosis in MCF-7 cells as indicated by nuclear condensation, increased annexin staining, loss of mitochondrial membrane potential and induction of DNA breaks identified by TUNEL reactivity. It is possible that the use of C. asiatica extract as a component in herbal medicines could be justifiable.

11.
Med Res Rev ; 27(5): 591-608, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17019678

RESUMEN

Anthraquinones represent a large family of compounds having diverse biological properties. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a naturally occurring anthraquinone present in the roots and barks of numerous plants, molds, and lichens, and an active ingredient of various Chinese herbs. Earlier studies have documented mutagenic/genotoxic effects of emodin, mainly in bacterial system. Emodin, first assigned to be a specific inhibitor of the protein tyrosine kinase p65lck, has now a number of cellular targets interacting with it. Its inhibitory effect on mammalian cell cycle modulation in specific oncogene overexpressed cells formed the basis of using this compound as an anticancer agent. Identification of apoptosis as a mechanism of elimination of cells treated with cytotoxic agents initiated new studies deciphering the mechanism of apoptosis induced by emodin. At present, its role in combination chemotherapy with standard drugs to reduce toxicity and to enhance efficacy is pursued vigorously. Its additional inhibitory effects on angiogenic and metastasis regulatory processes make emodin a sensible candidate as a specific blocker of tumor-associated events. Additionally, because of its quinone structure, emodin may interfere with electron transport process and in altering cellular redox status, which may account for its cytotoxic properties in different systems. However, there is no documentation available which reviews the biological activities of emodin, in particular, its growth inhibitory effects. This review is an attempt to analyze the biological properties of emodin, a molecule offering a broad therapeutic window, which in future may become a member of anticancer armamentarium.


Asunto(s)
Antineoplásicos/farmacología , Emodina/farmacología , Inhibidores de la Angiogénesis/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Antineoplásicos/metabolismo , Apoptosis , Catárticos/metabolismo , Catárticos/farmacología , Ciclo Celular/efectos de los fármacos , Proliferación Celular , Emodina/metabolismo , Humanos , Modelos Biológicos , Mutágenos/metabolismo , Mutágenos/farmacología , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...