Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Chem Biol ; 29(4): 572-585.e8, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-34265272

RESUMEN

The optimal use of many cancer drugs is hampered by a lack of detailed understanding of their mechanism of action (MoA). Here, we apply a high-resolution implementation of the proteome-wide cellular thermal shift assay (CETSA) to follow protein interaction changes induced by the antimetabolite 5-fluorouracil (5-FU) and related nucleosides. We confirm anticipated effects on the known main target, thymidylate synthase (TYMS), and enzymes in pyrimidine metabolism and DNA damage pathways. However, most interaction changes we see are for proteins previously not associated with the MoA of 5-FU, including wide-ranging effects on RNA-modification and -processing pathways. Attenuated responses of specific proteins in a resistant cell model identify key components of the 5-FU MoA, where intriguingly the abrogation of TYMS inhibition is not required for cell proliferation.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Fluorouracilo/farmacología , Proteoma , Proteómica , ARN
2.
Sci Rep ; 9(1): 19384, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852908

RESUMEN

The use of taxanes has for decades been crucial for treatment of several cancers. A major limitation of these therapies is inherent or acquired drug resistance. A key to improved outcome of taxane-based therapies is to develop tools to predict and monitor drug efficacy and resistance in the clinical setting allowing for treatment and dose stratification for individual patients. To assess treatment efficacy up to the level of drug target engagement, we have established several formats of tubulin-specific Cellular Thermal Shift Assays (CETSAs). This technique was evaluated in breast and prostate cancer models and in a cohort of breast cancer patients. Here we show that taxanes induce significant CETSA shifts in cell lines as well as in animal models including patient-derived xenograft (PDX) models. Furthermore, isothermal dose response CETSA measurements allowed for drugs to be rapidly ranked according to their reported potency. Using multidrug resistant cancer cell lines and taxane-resistant PDX models we demonstrate that CETSA can identify taxane resistance up to the level of target engagement. An imaging-based CETSA format was also established, which in principle allows for taxane target engagement to be accessed in specific cell types in complex cell mixtures. Using a highly sensitive implementation of CETSA, we measured target engagement in fine needle aspirates from breast cancer patients, revealing a range of different sensitivities. Together, our data support that CETSA is a robust tool for assessing taxane target engagement in preclinical models and clinical material and therefore should be evaluated as a prognostic tool during taxane-based therapies.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Próstata/tratamiento farmacológico , Taxoides/farmacología , Tubulina (Proteína)/genética , Biomarcadores de Tumor/genética , Biopsia con Aguja Fina/métodos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Femenino , Xenoinjertos , Humanos , Células MCF-7 , Masculino , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Taxoides/efectos adversos
3.
Annu Rev Biochem ; 88: 383-408, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30939043

RESUMEN

The cellular thermal shift assay (CETSA) is a biophysical technique allowing direct studies of ligand binding to proteins in cells and tissues. The proteome-wide implementation of CETSA with mass spectrometry detection (MS-CETSA) has now been successfully applied to discover targets for orphan clinical drugs and hits from phenotypic screens, to identify off-targets, and to explain poly-pharmacology and drug toxicity. Highly sensitive multidimensional MS-CETSA implementations can now also access binding of physiological ligands to proteins, such as metabolites, nucleic acids, and other proteins. MS-CETSA can thereby provide comprehensive information on modulations of protein interaction states in cellular processes, including downstream effects of drugs and transitions between different physiological cell states. Such horizontal information on ligandmodulation in cells is largely orthogonal to vertical information on the levels of different proteins and therefore opens novel opportunities to understand operational aspects of cellular proteomes.


Asunto(s)
Desarrollo de Medicamentos/métodos , Proteoma/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Humanos , Ligandos , Espectrometría de Masas , Unión Proteica , Proteoma/química , Proteómica
4.
PLoS One ; 12(3): e0173888, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28323844

RESUMEN

Fe65 is an adaptor protein involved in both processing and signaling of the Alzheimer-associated amyloid-ß precursor protein, APP. Here, the subcellular localization was further investigated using TAP-tagged Fe65 constructs expressed in human neuroblastoma cells. Our results indicate that PTB2 rather than the WW domain is important for the nuclear localization of Fe65. Electrophoretic mobility shift of Fe65 caused by phosphorylation was not detected in the nuclear fraction, suggesting that phosphorylation could restrict nuclear localization of Fe65. Furthermore, both ADAM10 and γ-secretase inhibitors decreased nuclear Fe65 in a similar way indicating an important role also of α-secretase in regulating nuclear translocation.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Proteína ADAM10/antagonistas & inhibidores , Proteína ADAM10/metabolismo , Transporte Activo de Núcleo Celular , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Línea Celular , Ensayo de Cambio de Movilidad Electroforética , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Mutagénesis , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteolisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Eliminación de Secuencia
5.
Neurosci Lett ; 613: 54-9, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26742640

RESUMEN

Fe65 is a brain enriched multi domain adaptor protein involved in diverse cellular functions. One of its binding partners is the amyloid-ß (Aß) precursor protein (APP), which after sequential proteolytic processing by secretases gives rise to the Alzheimer's Aß peptide. Fe65 binds to the APP intracellular domain (AICD). Several studies have indicated that Fe65 binding promotes the amyloidogenic processing of APP. It has previously been shown that expression of APP increases concomitantly with a shift of its processing to the non-amyloidogenic pathway during neuronal differentiation. In this study we wanted to investigate the effects of neuronal differentiation on Fe65 expression. We observed that differentiation of SH-SY5Y human neuroblastoma cells induced by retinoic acid (RA), the phorbol ester PMA, or the γ-secretase inhibitor DAPT resulted in an electrophoretic mobility shift of Fe65. Similar effects were observed in rat PC6.3 cells treated with nerve growth factor. The electrophoretic mobility shift was shown to be due to phosphorylation. Previous studies have shown that Fe65 phosphorylation can prevent the APP-Fe65 interaction. We propose that phosphorylation is a way to modify the functions of Fe65 and to promote the non-amyloidogenic processing of APP during neuronal differentiation.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Dipéptidos/farmacología , Humanos , Neuronas/efectos de los fármacos , Fluoruro de Fenilmetilsulfonilo/farmacología , Fosforilación , Acetato de Tetradecanoilforbol/farmacología , Tretinoina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA