Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 223(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38874393

RESUMEN

Hematopoietic stem cells (HSCs) continuously replenish mature blood cells with limited lifespans. To maintain the HSC compartment while ensuring output of differentiated cells, HSCs undergo asymmetric cell division (ACD), generating two daughter cells with different fates: one will proliferate and give rise to the differentiated cells' progeny, and one will return to quiescence to maintain the HSC compartment. A balance between MEK/ERK and mTORC1 pathways is needed to ensure HSC homeostasis. Here, we show that activation of these pathways is spatially segregated in premitotic HSCs and unequally inherited during ACD. A combination of genetic and chemical perturbations shows that an ERK-dependent mechanism determines the balance between pathways affecting polarity, proliferation, and metabolism, and thus determines the frequency of asymmetrically dividing HSCs. Our data identify druggable targets that modulate HSC fate determination at the level of asymmetric division.


Asunto(s)
División Celular Asimétrica , Células Madre Hematopoyéticas , Animales , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diferenciación Celular , Transducción de Señal , Proliferación Celular , Linaje de la Célula , Ratones , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Polaridad Celular
2.
Cell Rep ; 42(12): 113583, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38096057

RESUMEN

Selective autophagy mediates the removal of harmful material from the cytoplasm. This cargo material is selected by cargo receptors, which orchestrate its sequestration within double-membrane autophagosomes and subsequent lysosomal degradation. The cargo receptor p62/SQSTM1 is present in cytoplasmic condensates, and a fraction of them are constantly delivered into lysosomes. However, the molecular composition of the p62 condensates is incompletely understood. To obtain insights into their composition, we develop a method to isolate these condensates and find that p62 condensates are enriched in components of the translation machinery. Furthermore, p62 interacts with translation initiation factors, and eukaryotic initiation factor 2α (eIF2α) and eIF4E are degraded by autophagy in a p62-dependent manner. Thus, p62-mediated autophagy may in part be linked to down-regulation of translation initiation. The p62 condensate isolation protocol developed here may facilitate the study of their contribution to cellular quality control and their roles in health and disease.


Asunto(s)
Condensados Biomoleculares , Factor 2 Eucariótico de Iniciación , Factor 4E Eucariótico de Iniciación , Proteínas de Unión al ARN , Humanos , Células HEK293 , Proteínas de Unión al ARN/metabolismo , Condensados Biomoleculares/efectos de los fármacos , Condensados Biomoleculares/metabolismo , Factor 2 Eucariótico de Iniciación/antagonistas & inhibidores , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4E Eucariótico de Iniciación/metabolismo , Autofagia/efectos de los fármacos , Autofagia/genética , Wortmanina/farmacología
3.
Oncogene ; 42(20): 1649-1660, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020037

RESUMEN

More than 30% of all human cancers are driven by RAS mutations and activating KRAS mutations are present in 40% of colorectal cancer (CRC) in the two main CRC subgroups, MSS (Microsatellite Stable) and MSI (Microsatellite Instable). Studies in RAS-driven tumors have shown essential roles of the RAS effectors RAF and specifically of RAF1, which can be dependent or independent of RAF's ability to activate the MEK/ERK module. In this study, we demonstrate that RAF1, but not its kinase activity, plays a crucial role in the proliferation of both MSI and MSS CRC cell line-derived spheroids and patient-derived organoids, and independently of KRAS mutation status. Moreover, we could define a RAF1 transcriptomic signature which includes genes that contribute to STAT3 activation, and could demonstrate that RAF1 ablation decreases STAT3 phosphorylation in all CRC spheroids tested. The genes involved in STAT3 activation as well as STAT3 targets promoting angiogenesis were also downregulated in human primary tumors expressing low levels of RAF1. These results indicate that RAF1 could be an attractive therapeutic target in both MSI and MSS CRC regardless of their KRAS status and support the development of selective RAF1 degraders rather than RAF1 inhibitors for clinical use in combination therapies.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas B-raf/genética , Repeticiones de Microsatélite , Mutación , Inestabilidad de Microsatélites , Proliferación Celular/genética , Factor de Transcripción STAT3/genética
4.
Autophagy ; 19(1): 152-162, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35435804

RESUMEN

Impaired degradation of the transcriptional coactivator YAP1 and IL6ST (interleukin 6 cytokine family signal transducer), two proteins deregulated in liver cancer, has been shown to promote tumor growth. Here, we demonstrate that YAP1 and IL6ST are novel substrates of chaperone-mediated autophagy (CMA) in human hepatocellular carcinoma (HCC) and hepatocyte cell lines. Knockdown of the lysosomal CMA receptor LAMP2A increases protein levels of YAP1 and IL6ST, without changes in mRNA expression. Additionally, both proteins show KFERQ-dependent binding to the CMA chaperone HSPA8 and accumulate into isolated lysosomes after stimulation of CMA by prolonged starvation. We further show that LAMP2A downregulation promotes the proliferation and migration in HCC cells and a human hepatocyte cell line, and that it does so in a YAP1- and IL6ST-dependent manner. Finally, LAMP2A expression is downregulated, and YAP1 and IL6ST expression is upregulated, in human HCC biopsies. Taken together, our work reveals a novel mechanism that controls the turnover of two cancer-relevant proteins and suggests a tumor suppressor function of CMA in the liver, advocating for the exploitation of CMA activity for diagnostic and therapeutic purposes.Abbreviations: ACTB: actin beta; ATG5: autophagy related 5; ATG7: autophagy related 7; CMA: chaperone-mediated autophagy; eMI: endosomal microautophagy; HCC: hepatocellular carcinoma; HSPA8: heat shock protein family A (Hsp70) member 8; IL6ST: interleukin 6 cytokine family signal transducer; JAK: Janus kinase; LAMP1: lysosomal associated membrane protein 1; LAMP2A: lysosomal associated membrane protein 2A; MAPK8: mitogen-activated protein kinase 8; P6: pyridine 6; SQSTM1: sequestosome 1; TUBA: tubulin alpha; VDAC1: voltage dependent anion channel 1; VP: verteporfin; YAP1: Yes1 associated transcriptional regulator.


Asunto(s)
Carcinoma Hepatocelular , Autofagia Mediada por Chaperones , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Autofagia/fisiología , Neoplasias Hepáticas/metabolismo , Interleucina-6/metabolismo , Línea Celular , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proliferación Celular , Lisosomas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Receptor gp130 de Citocinas/metabolismo
5.
FEBS J ; 290(1): 73-75, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35332671

RESUMEN

In this special interview series, we profile members of The FEBS Journal editorial board to highlight their research focus, perspectives on the journal and future directions in their field. Manuela Baccarini is Professor of Cell Signaling at the University of Vienna, Coordinator of the International PhD Program 'Signaling Mechanisms in Cellular Homeostasis' and Director of the Vienna BioCenter PhD Program, a graduate school of the University and Medical University of Vienna in collaboration with the Institute of Molecular Pathology and the Austrian Academy of Sciences, Institute for Medical Biotechnology and Gregor Mendel Institute, as well as EMBO member and corresponding member of the Austrian Academy of Sciences. She has served as an editorial board member of The FEBS Journal since 2016.


Asunto(s)
Biotecnología , Humanos
6.
BMC Genomics ; 23(1): 817, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494623

RESUMEN

BACKGROUND: Quantitative proteomics has become an increasingly prominent tool in the study of life sciences. A substantial hurdle for many biologists are, however, the intricacies involved in the associated high throughput data analysis. RESULTS: In order to facilitate this task for users with limited background knowledge, we have developed amica, a freely available open-source web-based software that accepts proteomic input files from different sources. amica provides quality control, differential expression, biological network and over-representation analysis on the basis of minimal user input. Scientists can use amica's query interface interactively to compare multiple conditions and rapidly identify enriched or depleted proteins. They can visualize their results using customized output graphics, and ultimately export the results in a tab-separated format that can be shared with collaborators. The code for the application, input data and documentation can be accessed online at https://github.com/tbaccata/amica and is also incorporated in the web application. CONCLUSIONS: The strong emphasis on dynamic user interactions, the integration of various databases and the option to download processed data, facilitate the analysis of complex proteomic data for both first-time users and experienced bioinformaticians. A freely available version of amica is available at https://bioapps.maxperutzlabs.ac.at/app/amica .


Asunto(s)
Proteómica , Programas Informáticos , Proteómica/métodos , Proteínas/metabolismo , Bases de Datos Factuales , Internet
7.
FASEB J ; 36(9): e22478, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35916021

RESUMEN

The dynamics of the actin cytoskeleton and its connection to endothelial cell-cell junctions determine the barrier function of endothelial cells. The proper regulation of barrier opening/closing is necessary for the normal function of vessels, and its dysregulation can result in chronic and acute inflammation leading to edema formation. By using atomic force microscopy, we show here that thrombin-induced permeability of human umbilical vein endothelial cells, associated with actin stress fiber formation, stiffens the cell center. The depletion of the MEK/ERK kinase BRAF reduces thrombin-induced permeability prevents stress fiber formation and cell stiffening. The peripheral actin ring becomes stabilized by phosphorylated myosin light chain, while cofilin is excluded from the cell periphery. All these changes can be reverted by the inhibition of ROCK, but not of the MEK/ERK module. We propose that the balance between the binding of cofilin and myosin to F-actin in the cell periphery, which is regulated by the activity of ROCK, determines the local dynamics of actin reorganization, ultimately driving or preventing stress fiber formation.


Asunto(s)
Actinas , Proteínas Proto-Oncogénicas B-raf , Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas B-raf/metabolismo , Trombina/metabolismo
8.
PLoS Pathog ; 17(7): e1009697, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34237114

RESUMEN

Listeria monocytogenes (L. monocytogenes) is a food-borne bacterial pathogen. Innate immunity to L. monocytogenes is profoundly affected by type I interferons (IFN-I). Here we investigated host metabolism in L. monocytogenes-infected mice and its potential control by IFN-I. Accordingly, we used animals lacking either the IFN-I receptor (IFNAR) or IRF9, a subunit of ISGF3, the master regulator of IFN-I-induced genes. Transcriptomes and metabolite profiles showed that L. monocytogenes infection induces metabolic rewiring of the liver. This affects various metabolic pathways including fatty acid (FA) metabolism and oxidative phosphorylation and is partially dependent on IFN-I signaling. Livers and macrophages from Ifnar1-/- mice employ increased glutaminolysis in an IRF9-independent manner, possibly to readjust TCA metabolite levels due to reduced FA oxidation. Moreover, FA oxidation inhibition provides protection from L. monocytogenes infection, explaining part of the protection of Irf9-/- and Ifnar1-/- mice. Our findings define a role of IFN-I in metabolic regulation during L. monocytogenes infection. Metabolic differences between Irf9-/- and Ifnar1-/- mice may underlie the different susceptibility of these mice against lethal infection with L. monocytogenes.


Asunto(s)
Interferón Tipo I/metabolismo , Listeria monocytogenes/metabolismo , Listeriosis/metabolismo , Hígado/metabolismo , Animales , Ácidos Grasos/metabolismo , Interferón Tipo I/inmunología , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Hígado/inmunología , Ratones , Ratones Endogámicos C57BL
9.
Sci Signal ; 14(682)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33975980

RESUMEN

Members of the RAF family of serine-threonine kinases are intermediates in the mitogen-activated protein kinase and extracellular signal-regulated kinase (MAPK-ERK) signaling pathway, which controls key differentiation processes in B cells. By analyzing mice with B cell-specific deletion of Raf1, Braf, or both, we showed that Raf-1 and B-Raf acted together in mediating the positive selection of pre-B and transitional B cells as well as in initiating plasma cell differentiation. However, genetic or chemical inactivation of RAFs led to increased ERK phosphorylation in mature B cells. ERK activation in the absence of Raf-1 and B-Raf was mediated by multiple RAF-independent pathways, with phosphoinositide 3-kinase (PI3K) playing an important role. Furthermore, we found that ERK phosphorylation strongly increased during the transition from activated B cells to pre-plasmablasts. This increase in ERK phosphorylation did not occur in B cells lacking both Raf-1 and B-Raf, which most likely explains the partial block of plasma cell differentiation in mice lacking both RAFs. Collectively, our data indicate that B-Raf and Raf-1 are not necessary to mediate ERK phosphorylation in naïve or activated B cells but are essential for mediating the marked increase in ERK phosphorylation during the transition from activated B cells to pre-plasmablasts.


Asunto(s)
Linfocitos B/citología , Quinasas MAP Reguladas por Señal Extracelular , Células Plasmáticas/citología , Proteínas Proto-Oncogénicas c-raf , Animales , Diferenciación Celular , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas , Fosforilación , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo
10.
Cancer Cell ; 35(5): 798-815.e5, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-31031016

RESUMEN

Tumor cells may adapt to metabolic challenges by alternating between glycolysis and oxidative phosphorylation (OXPHOS). To target this metabolic plasticity, we combined intermittent fasting, a clinically feasible approach to reduce glucose availability, with the OXPHOS inhibitor metformin. In mice exposed to 24-h feeding/fasting cycles, metformin impaired tumor growth only when administered during fasting-induced hypoglycemia. Synergistic anti-neoplastic effects of the metformin/hypoglycemia combination were mediated by glycogen synthase kinase 3ß (GSK3ß) activation downstream of PP2A, leading to a decline in the pro-survival protein MCL-1, and cell death. Mechanistically, specific activation of the PP2A-GSK3ß axis was the sum of metformin-induced inhibition of CIP2A, a PP2A suppressor, and of upregulation of the PP2A regulatory subunit B56δ by low glucose, leading to an active PP2A-B56δ complex with high affinity toward GSK3ß.


Asunto(s)
Ayuno/metabolismo , Hipoglucemia/metabolismo , Metformina/administración & dosificación , Neoplasias/terapia , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucólisis/efectos de los fármacos , Células HCT116 , Células HeLa , Humanos , Hipoglucemia/etiología , Metformina/farmacología , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neoplasias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Proteína Fosfatasa 2/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
11.
FEBS J ; 286(12): 2277-2294, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30828992

RESUMEN

The endothelium functions as a semipermeable barrier regulating fluid homeostasis, nutrient, and gas supply to the tissue. Endothelial permeability is increased in several pathological conditions including inflammation and tumors; despite its clinical relevance, however, there are no specific therapies preventing vascular leakage. Here, we show that endothelial cell-restricted ablation of BRAF, a kinase frequently activated in cancer, prevents vascular leaking as well metastatic spread. BRAF regulates endothelial permeability by promoting the cytoskeletal rearrangements necessary for the remodeling of VE-Cadherin-containing endothelial cell-cell junctions and the formation of intercellular gaps. BRAF kinase activity and the ability to form complexes with RAS/RAP1 and dimers with its paralog RAF1 are required for proper permeability control, achieved mechanistically by modulating the interaction between RAF1 and the RHO effector ROKα. Thus, RAF dimerization impinges on RHO pathways to regulate cytoskeletal rearrangements, junctional plasticity, and endothelial permeability. The data advocate the development of RAF dimerization inhibitors, which would combine tumor cell autonomous effect with stabilization of the vasculature and antimetastatic spread.


Asunto(s)
Antígenos CD/genética , Cadherinas/genética , Citoesqueleto/genética , Proteínas Proto-Oncogénicas B-raf/genética , Quinasas Asociadas a rho/genética , Animales , Permeabilidad Capilar/genética , Citoesqueleto/metabolismo , Dimerización , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Uniones Intercelulares/genética , Ratones , Fosforilación/genética , Factor Rho/genética , Transducción de Señal , Proteínas de Unión al GTP rap1/genética
12.
Sci Signal ; 11(554)2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30377225

RESUMEN

RAS-RAF-MEK-ERK signaling has a well-defined role in cancer biology. Although aberrant pathway activation occurs mostly upstream of the kinase MEK, mutations in MEK are prevalent in some cancer subsets. Here, we found that cancer-related, activating mutations in MEK can be classified into two groups: those that relieve inhibitory interactions with the helix A region and those that are in-frame deletions of the ß3-αC loop, which enhance MEK1 homodimerization. The former, helix A-associated mutants, are inhibited by traditional MEK inhibitors. However, we found that the increased homodimerization associated with the loop-deletion mutants promoted intradimer cross-phosphorylation of the activation loop and conferred differential resistance to MEK inhibitors both in vitro and in vivo. MEK1 dimerization was required both for its activation by the kinase RAF and for its catalytic activity toward the kinase ERK. Our findings not only identify a previously unknown group of MEK mutants and provide insight into some key steps in RAF-MEK-ERK activation but also have implications for the design of therapies targeting RAS-ERK signaling in cancers.


Asunto(s)
Carcinogénesis , MAP Quinasa Quinasa 1/genética , Sistema de Señalización de MAP Quinasas , Neoplasias/genética , Animales , Transformación Celular Neoplásica , Fibroblastos/metabolismo , Células HEK293 , Humanos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Ratones , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Multimerización de Proteína , Eliminación de Secuencia , Transducción de Señal
13.
Oncogene ; 37(43): 5719-5734, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29930381

RESUMEN

Although extensively studied for three decades, the molecular mechanisms that regulate the RAF/MEK/ERK kinase cascade remain ambiguous. Recent studies identified the dimerization of RAF as a key event in the activation of this cascade. Here, we show that in-frame deletions in the ß3-αC loop activate ARAF as well as BRAF and other oncogenic kinases by enforcing homodimerization. By characterizing these RAF mutants, we find that ARAF has less allosteric and catalytic activity than the other two RAF isoforms, which arises from its non-canonical APE motif. Further, these RAF mutants exhibit a strong oncogenic potential, and a differential inhibitor resistance that correlates with their dimer affinity. Using these unique mutants, we demonstrate that active RAFs, including the BRAF(V600E) mutant, phosphorylate MEK in a dimer-dependent manner. This study characterizes a special category of oncogenic kinase mutations, and elucidates the molecular basis that underlies the differential ability of RAF isoforms to stimulate MEK-ERK pathway. Further, this study reveals a unique catalytic feature of RAF family kinases that can be exploited to control their activities for cancer therapies.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Mutación , Neoplasias , Multimerización de Proteína , Quinasas raf/metabolismo , Animales , Catálisis , Línea Celular Tumoral , Ratones , Ratones Noqueados , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Quinasas raf/genética
14.
Cell Stem Cell ; 22(6): 879-892.e6, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29804890

RESUMEN

Hematopoietic stem cells (HSCs) sustain hematopoiesis throughout life. HSCs exit dormancy to restore hemostasis in response to stressful events, such as acute blood loss, and must return to a quiescent state to prevent their exhaustion and resulting bone marrow failure. HSC activation is driven in part through the phosphatidylinositol 3-kinase (PI3K)/AKT/mTORC1 signaling pathway, but less is known about the cell-intrinsic pathways that control HSC dormancy. Here, we delineate an ERK-dependent, rate-limiting feedback mechanism that controls HSC fitness and their re-entry into quiescence. We show that the MEK/ERK and PI3K pathways are synchronously activated in HSCs during emergency hematopoiesis and that feedback phosphorylation of MEK1 by activated ERK counterbalances AKT/mTORC1 activation. Genetic or chemical ablation of this feedback loop tilts the balance between HSC dormancy and activation, increasing differentiated cell output and accelerating HSC exhaustion. These results suggest that MEK inhibitors developed for cancer therapy may find additional utility in controlling HSC activation.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/enzimología , Animales , Células Cultivadas , Técnicas de Cocultivo , Femenino , Humanos , MAP Quinasa Quinasa 1/deficiencia , MAP Quinasa Quinasa 1/metabolismo , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Especies Reactivas de Oxígeno/metabolismo
15.
Nat Commun ; 8: 15262, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28497782

RESUMEN

NRAS and its effector BRAF are frequently mutated in melanoma. Paradoxically, CRAF but not BRAF was shown to be critical for various RAS-driven cancers, raising the question of the role of RAF proteins in NRAS-induced melanoma. Here, using conditional ablation of Raf genes in NRAS-induced mouse melanoma models, we investigate their contribution in tumour progression, from the onset of benign tumours to malignant tumour maintenance. We show that BRAF expression is required for ERK activation and nevi development, demonstrating a critical role in the early stages of NRAS-driven melanoma. After melanoma formation, single Braf or Craf ablation is not sufficient to block tumour growth, showing redundant functions for RAF kinases. Finally, proliferation of resistant cells emerging in the absence of BRAF and CRAF remains dependent on ARAF-mediated ERK activation. These results reveal specific and compensatory functions for BRAF and CRAF and highlight an addiction to RAF signalling in NRAS-driven melanoma.


Asunto(s)
Melanoma/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas ras/metabolismo , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Humanos , Sistema de Señalización de MAP Quinasas/genética , Melanoma/genética , Melanoma/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas de Unión al GTP Monoméricas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas ras/genética
16.
Sci Signal ; 10(469)2017 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-28270557

RESUMEN

Downstream of growth factor receptors and of the guanine triphosphatase (GTPase) RAS, heterodimers of the serine/threonine kinases BRAF and RAF1 are critical upstream kinases and activators of the mitogen-activated protein kinase (MAPK) module containing the mitogen-activated and extracellular signal-regulated kinase kinase (MEK) and their targets, the extracellular signal-regulated kinase (ERK) family. Either direct or scaffold protein-mediated interactions among the components of the ERK module (the MAPKKKs BRAF and RAF1, MEK, and ERK) facilitate signal transmission. RAF1 also has essential functions in the control of tumorigenesis and migration that are mediated through its interaction with the kinase ROKα, an effector of the GTPase RHO and regulator of cytoskeletal rearrangements. We combined mutational and kinetic analysis with mathematical modeling to show that the interaction of RAF1 with ROKα is coordinated with the role of RAF1 in the ERK pathway. We found that the phosphorylated form of RAF1 that interacted with and inhibited ROKα was generated during the interaction of RAF1 with the ERK module. This mechanism adds plasticity to the ERK pathway, enabling signal diversification at the level of both ERK and RAF. Furthermore, by connecting ERK activation with the regulation of ROKα and cytoskeletal rearrangements by RAF1, this mechanism has the potential to precisely coordinate the proper timing of proliferation with changes in cell shape, adhesion, or motility.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Transducción de Señal , Proteínas ras/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Células COS , Línea Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Embrión de Mamíferos/citología , Factor de Crecimiento Epidérmico/farmacología , Quinasas MAP Reguladas por Señal Extracelular/genética , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Immunoblotting , Ratones Noqueados , Unión Proteica , Multimerización de Proteína , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-raf/química , Proteínas Proto-Oncogénicas c-raf/genética , Interferencia de ARN , Proteínas ras/genética , Quinasas Asociadas a rho/genética
17.
Biochem Soc Trans ; 45(1): 27-36, 2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-28202657

RESUMEN

The RAS/ERK pathway has been intensely studied for about three decades, not least because of its role in human pathologies. ERK activation is observed in the majority of human cancers; in about one-third of them, it is driven by mutational activation of pathway components. The pathway is arguably one of the best targets for molecule-based pharmacological intervention, and several small-molecule inhibitors are in clinical use. Genetically engineered mouse models have greatly contributed to our understanding of signaling pathways in development, tissue homeostasis, and disease. In the specific case of the RAS/ERK pathway, they have revealed unique biological roles of structurally and functionally similar proteins, new kinase-independent effectors, and unsuspected relationships with other cascades. This short review summarizes the contribution of mouse models to our current understanding of the pathway.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Neoplasias/metabolismo , Proteínas ras/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Mutación , Neoplasias/clasificación , Neoplasias/genética , Microambiente Tumoral/genética , Proteínas ras/genética
18.
J Biol Chem ; 292(8): 3164-3171, 2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28073913

RESUMEN

Hypophosphatemia causes rickets by impairing hypertrophic chondrocyte apoptosis. Phosphate induction of MEK1/2-ERK1/2 phosphorylation in hypertrophic chondrocytes is required for phosphate-mediated apoptosis and growth plate maturation. MEK1/2 can be activated by numerous molecules including Raf isoforms. A- and B-Raf ablation in chondrocytes does not alter skeletal development, whereas ablation of C-Raf decreases hypertrophic chondrocyte apoptosis and impairs vascularization of the growth plate. However, ablation of C-Raf does not impair phosphate-induced ERK1/2 phosphorylation in vitro, but leads to rickets by decreasing VEGF protein stability. To determine whether Raf isoforms are required for phosphate-induced hypertrophic chondrocyte apoptosis, mice lacking all three Raf isoforms in chondrocytes were generated. Raf deletion caused neonatal death and a significant expansion of the hypertrophic chondrocyte layer of the growth plate, accompanied by decreased cleaved caspase-9. This was associated with decreased phospho-ERK1/2 immunoreactivity in the hypertrophic chondrocyte layer and impaired vascular invasion. These data further demonstrated that Raf kinases are required for phosphate-induced ERK1/2 phosphorylation in cultured hypertrophic chondrocytes and perform essential, but partially redundant roles in growth plate maturation.


Asunto(s)
Condrocitos/metabolismo , Condrogénesis , Placa de Crecimiento/crecimiento & desarrollo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas A-raf/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Animales , Apoptosis , Desarrollo Óseo , Células Cultivadas , Condrocitos/citología , Condrocitos/patología , Placa de Crecimiento/metabolismo , Ratones Endogámicos C57BL , Fosfatos/metabolismo , Fosforilación , Isoformas de Proteínas/metabolismo , Quinasas raf/metabolismo
19.
Nat Commun ; 7: 13781, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-28000790

RESUMEN

Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths, but its molecular heterogeneity hampers the design of targeted therapies. Currently, the only therapeutic option for advanced HCC is Sorafenib, an inhibitor whose targets include RAF. Unexpectedly, RAF1 expression is reduced in human HCC samples. Modelling RAF1 downregulation by RNAi increases the proliferation of human HCC lines in xenografts and in culture; furthermore, RAF1 ablation promotes chemical hepatocarcinogenesis and the proliferation of cultured (pre)malignant mouse hepatocytes. The phenotypes depend on increased YAP1 expression and STAT3 activation, observed in cultured RAF1-deficient cells, in HCC xenografts, and in autochthonous liver tumours. Thus RAF1, although essential for the development of skin and lung tumours, is a negative regulator of hepatocarcinogenesis. This unexpected finding highlights the contribution of the cellular/tissue environment in determining the function of a protein, and underscores the importance of understanding the molecular context of a disease to inform therapy design.


Asunto(s)
Carcinogénesis/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Carcinogénesis/inducido químicamente , Carcinogénesis/genética , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Células Cultivadas , Dietilnitrosamina , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Ratones Noqueados , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-raf/genética , Interferencia de ARN , Transducción de Señal/genética , Proteínas Supresoras de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Oncotarget ; 7(49): 80113-80130, 2016 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-27741509

RESUMEN

The dual-specificity kinases MEK1 and MEK2 act downstream of RAS/RAF to induce ERK activation, which is generally considered protumorigenic. Activating MEK mutations have not been discovered in leukemia, in which pathway activation is caused by mutations in upstream components such as RAS or Flt3. The anti-leukemic potential of MEK inhibitors is being tested in clinical trials; however, downregulation of MEK1 promotes Eµ-Myc-driven lymphomagenesis and MEK1 ablation induces myeloproliferative disease in mice, raising the concern that MEK inhibitors may be inefficient or counterproductive in this context. We investigated the role of MEK1 in the proliferation of human leukemic cell lines and in retroviral models of leukemia. Our data show that MEK1 suppression via RNA interference and genomic engineering does not affect the proliferation of human leukemic cell lines in culture; similarly, MEK1 ablation does not impact the development of MYC-driven leukemia in vivo. In contrast, MEK1 ablation significantly reduces tumorigenesis driven by Nras alone or in combination with Myc. Thus, while MEK1 restricts proliferation and tumorigenesis in some cellular and genetic contexts, it cannot be considered a tumor suppressor in the context of leukemogenesis. On the contrary, its role in NRAS-driven leukemogenesis advocates the use of MEK inhibitors, particularly in combination with PI3K/AKT inhibitors, in hematopoietic malignancies involving RAS activation.


Asunto(s)
GTP Fosfohidrolasas/genética , Leucemia/enzimología , MAP Quinasa Quinasa 1/metabolismo , Proteínas de la Membrana/genética , Animales , Proliferación Celular , Regulación Leucémica de la Expresión Génica , Predisposición Genética a la Enfermedad , Células HL-60 , Humanos , Células K562 , Leucemia/genética , Leucemia/patología , MAP Quinasa Quinasa 1/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , Transducción de Señal , Células THP-1 , Factores de Tiempo , Transfección , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA