Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 86
1.
ACS Pharmacol Transl Sci ; 7(5): 1377-1385, 2024 May 10.
Article En | MEDLINE | ID: mdl-38751642

CDK5 kinase plays a central role in the regulation of neuronal functions, and its hyperactivation has been associated with neurodegenerative pathologies and more recently with several human cancers, in particular lung cancer. However, ATP-competitive inhibitors targeting CDK5 are poorly selective and suffer limitations, calling for new classes of inhibitors. In a screen for allosteric modulators of CDK5, we identified ethaverine and closely related derivative papaverine and showed that they inhibit cell proliferation and migration of non small cell lung cancer cell lines. Moreover the efficacy of these compounds is significantly enhanced when combined with the ATP-competitive inhibitor roscovitine, suggesting an additive dual mechanism of inhibition targeting CDK5. These compounds do not affect CDK5 stability, but thermodenaturation studies performed with A549 cell extracts infer that they interact with CDK5 in cellulo. Furthermore, the inhibitory potentials of ethaverine and papaverine are reduced in A549 cells treated with siRNA directed against CDK5. Taken together, our results provide unexpected and novel evidence that ethaverine and papaverine constitute promising leads that can be repurposed for targeting CDK5 in lung cancer.

2.
Eur J Med Chem ; 259: 115626, 2023 Nov 05.
Article En | MEDLINE | ID: mdl-37453330

Angiogenesis, the formation of new blood vessels from the existing vasculature, is pivotal in the migration, growth, and differentiation of endothelial cells in normal physiological conditions. In various types of tumour microenvironments, dysregulated angiogenesis plays a crucial role in supplying oxygen and nutrients to cancerous cells, leading to tumour size growth. VEGFR-2 tyrosine kinase has been extensively studied as a critical regulator of angiogenesis; thus, inhibition of VEGFR-2 has been widely used for cancer treatments in recent years. Quinazoline nucleus is a privileged and versatile scaffold with a broad range of pharmacological activity, especially in the field of tyrosine kinase inhibitors with more than twenty small molecule inhibitors approved by the US Food and Drug Administration in the last two decades. As of now, the U.S. FDA has approved eleven small chemical inhibitors of VEGFR-2 for various types of malignancies, with a prime example being vandetanib, a quinazoline derivative, which is a multi targeted kinase inhibitor used for the treatment of late-stage medullary thyroid cancer. Despite of prosperous discovery and development of VEGFR-2 down regulator drugs, there still exists limitations in clinical efficacy, adverse effects, a high rate of clinical discontinuation and drug resistance. Therefore, there is an urgent need for the design and synthesis of more selective and effective inhibitors to tackle these challenges. Through the gathering of this review, we have strived to broaden the extent of our view over the entire scope of quinazoline-based VEGFR-2 inhibitors. Herein, we give an overview of the importance and advancement status of reported structures, highlighting the SAR, biological evaluations and their binding modes.


Antineoplastic Agents , Neoplasms , Humans , Angiogenesis Inhibitors/chemistry , Antineoplastic Agents/pharmacology , Endothelial Cells/metabolism , Molecular Docking Simulation , Neoplasms/drug therapy , Protein Kinase Inhibitors/chemistry , Quinazolines/chemistry , Tumor Microenvironment , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
3.
Microbiol Spectr ; 11(4): e0013723, 2023 08 17.
Article En | MEDLINE | ID: mdl-37260371

Eimeria tenella is an obligate intracellular parasite responsible for avian coccidiosis. Like other apicomplexan parasites, such as Toxoplasma gondii, cell invasion and intracellular development rely on apical organelle content discharge, named micronemes and rhoptries. Some rhoptry (ROP) kinases (ROPK) are key virulence factors in T. gondii. To date, among the 28 ropk genes carried by E. tenella, only two to four were confirmed by proteomic analysis or immunostaining to be expressed at the sporozoite stage. We have previously shown that EtROP1 is implicated in the inhibition of host cell apoptosis by interacting with the cellular p53. This work functionally described the second ROP kinase expressed at the sporozoite stage in E. tenella. EtROP2 is an active kinase that phosphorylates cell substrates of approximately 50 kDa. Its overexpression leads to the shortening of the prepatent period and to the early development of first-generation schizonts. Conduction of RNA sequencing analysis and reverse transcriptase quantitative PCR (RT-qPCR) on the host cell allowed us to identify the mitogen-activated protein kinase (MAPK) pathway and the transcription factor cFos to be upregulated by EtROP2. We also showed by immunofluorescence assay that the active kinase EtROP2 is implicated in the p38 MAPK pathway activation. We established here that EtROP2 activates the p38 MAPK pathway through a direct or indirect phosphorylation, leading to the overexpression of the master transcription factor cFos known to be implicated in E. tenella development. IMPORTANCE Rhoptries are specialized secretory organelles found in zoite stages of apicomplexan parasites. In addition to well-conserved rhoptry neck proteins, their protein consists mostly of kinase proteins, highly divergent from eukaryotic kinases. Some of those kinases are described as major virulence factors in Toxoplasma gondii, secreted into the host cell to hijack signaling pathways. Most of those kinases remain to be characterized in Eimeria tenella. Deciphering their cellular function is a prerequisite to supporting their relevance as a druggable target in development of new means of Eimeria tenella control. Secreted divergent kinases that interact with host cell partners to modulate pathways are good candidates, as they coevolve with their host targets to ensure their function within the host and are less prone to mutations that would lead to drug resistance. The absence of any orthologous kinase in host cells makes these parasite kinases a promising drug target candidate.


Eimeria tenella , Toxoplasma , Animals , Eimeria tenella/genetics , Protozoan Proteins/metabolism , Schizonts/metabolism , Proteomics , Toxoplasma/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Transcription Factors/metabolism , Virulence Factors/genetics
4.
Biochemistry ; 62(9): 1452-1463, 2023 05 02.
Article En | MEDLINE | ID: mdl-37074084

Tamoxifen, the gold standard drug for endocrine therapy for breast cancer, modulates the phosphorylation status of the TAU protein in Alzheimer's disease by inhibiting CDK5 kinase activity. Its binding to p25 prevents CDK5/p25 complexation and hence a decrease of CDK5 activity. In breast tumors, this complex is involved in the proliferation and survival of cancer cells, as well as in the disease's prognosis. Still, the molecular stability of the CDK5/p25 complex following tamoxifen exposure in this cancer type has not yet been clearly deciphered. Here, we report the functional characterization of CDK5 and its p25 regulatory subunit in the absence and presence of tamoxifen. In addition, two novel inhibitors of the kinase activity of the CDK5/p25 complex are identified, both of which would reduce the risk of recurrence of estrogen receptor-positive (ER+) breast cancers and prevent drawbacks induced by tamoxifen exposure. Accordingly, 6His-CDK5 and 6His-p25 have been expressed and purified. Fluorescence anisotropy measurements have been used to assess that the two proteins do form an active complex, and thermodynamic parameters of their interaction were measured. It was also confirmed that tamoxifen directly binds to p25 and inhibits CDK5 kinase activity. Similar observations were obtained using 4-hydroxytamoxifen, an active metabolized form of tamoxifen. Two novel compounds have been identified here that harbor a benzofuran moiety and were shown to target directly p25, and their bindings resulted in decreased CDK5 kinase activity. This encouraging alternative opens the way to the ensuing chemical optimization of this scaffold. It also promises a more specific therapeutic approach that may both tackle the pathological signaling in breast cancer and provide a potential new drug for Alzheimer's disease.


Alzheimer Disease , Breast Neoplasms , Humans , Female , Phosphorylation , Alzheimer Disease/metabolism , tau Proteins/metabolism , Cyclin-Dependent Kinase 5/metabolism , Signal Transduction , Tamoxifen
5.
Bioorg Chem ; 134: 106456, 2023 05.
Article En | MEDLINE | ID: mdl-36913879

The 2-(3-pyridyl)oxazolo[5,4-f]quinoxalines CD-07 and FL-291 are ATP-competitive GSK-3 kinase inhibitors. Here, we investigated the impact of FL-291 on neuroblastoma cell viability and showed that treatment at 10 µM (i.e. ∼500 times the IC50 against the GSK-3 isoforms) has no significant effect on the viability of NSC-34 motoneuron-like cells. A study performed on primary neurons (non-cancer cells) led to similar results. The structures co-crystallized with GSK-3ß revealed similar binding modes for FL-291 and CD-07, with their hinge-oriented planar tricyclic system. Both GSK isoforms show the same orientations for the amino acids at the binding pocket except for Phe130 (α) and Phe67 (ß), leading to a larger pocket on the opposite side of the hinge region for the α isoform. Calculations of the thermodynamic properties of the binding pockets highlighted the required features of potential ligands; these should have a hydrophobic core (which could be larger in the case of GSK-3ß) surrounded by polar areas (a little more polar in the case of GSK-3α). A library of 27 analogs of FL-291 and CD-07 was thus designed and synthesized by taking advantage of this hypothesis. While the introduction of substituents at different positions of the pyridine ring, the replacement of the pyridine by other heterocyclic moieties, or the replacement of the quinoxaline ring by a quinoline moiety did not lead to any improvement, the replacement of the N-(thio)morpholino of FL-291/CD-07 by a slightly more polar N-thiazolidino led to a significant result. Indeed, the new inhibitor MH-124 showed clear selectivity for the α isoform, with IC50 values of 17 nM and 239 nM on GSK-3α and GSK-3ß, respectively. Finally, the efficacy of MH-124 was evaluated on two glioblastoma cell lines. Although MH-124 alone did not have a significant impact on cell survival, its addition to temozolomide (TMZ) significantly reduced the TMZ IC50 values on the cells tested. The use of the Bliss model allowed a synergy to be evidenced at certain concentrations.


Glioblastoma , Glycogen Synthase Kinase 3 , Humans , Temozolomide , Glycogen Synthase Kinase 3 beta , Quinoxalines/pharmacology , Protein Serine-Threonine Kinases , Protein Isoforms
6.
Bioorg Chem ; 133: 106383, 2023 04.
Article En | MEDLINE | ID: mdl-36764231

Tyrosine protein kinases (TKs) have been proved to play substantial roles on many cellular processes and their overexpression tend to be found in various types of cancers. Therefore, over recent decades, numerous tyrosine protein kinase inhibitors particularly epidermal growth factor receptor (EGFR) inhibitors have been introduced to treat cancer. Present study describes a novel series of imidazo[1,2-a]quinazolines 18 as potential -inhibitors. These imidazoquinazolines (18a and 18o, in particular) had great anti-proliferative activities with IC50 values in the micromolar (µM) range against PC3, HepG2, HeLa, and MDA-MB-231 comparing with Erlotinib as reference marketed drug. Further evaluations on some derivatives revealed their potential to induce apoptotic cell death and cell growth arrest at G0 phase of the cell cycle. Afterwards, the kinase assay on the most potent compounds 18a and 18o demonstrated their inhibitory potencies and selectivity toward EGFR (with EGFR-IC50 values of 82.0 µM and 12.3 µM, respectively). Additionally, western blot analysis on these compounds 18a and 18o exhibited that they inhibited the phosphorylation of EGFR and its downstream molecule extracellular signal-regulated kinase (ERK1/2). However, the level of B-Actin phosphorylation was not changed. Finally, density functional theory calculations, docking study, and independent gradient model (IGM) were performed to illustrate the structure-activity relationship (SAR) and to assess the interactions between proteins and ligands. The results of molecular docking studies had great agreement with the obtained EGFR inhibitory results through in vitro evaluations.


Antineoplastic Agents , Quinazolines , Oxygen Isotopes/pharmacology , Molecular Docking Simulation , Quinazolines/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , ErbB Receptors , Structure-Activity Relationship , Cell Proliferation , Protein Kinase Inhibitors
7.
Molecules ; 27(19)2022 Sep 20.
Article En | MEDLINE | ID: mdl-36234686

Three series of our lead CLK1 inhibitor DB18 have been designed, synthetized and tested against CLKs and DYRK1A kinases. Their cytotoxicity was subsequently measured on seven representative cancer cell lines. Guided by docking experiments, we focused on the less constrained part of the scaffold, and showed that drastically different substituents can be tolerated here. This work ended with the discovery of another promising derivative 12g, with IC50 = 0.004 µM in the inhibition of HsCLK1 and IC50 = 3.94 µM for the inhibition of HsDYRK1A. The SAR results are discussed in the light of extensive molecular modeling analyses. Finally, a kinome scan (463 human kinases) confirmed the outstanding selectivity of our lead compound DB18, suggesting that this scaffold is of prominent interest for selective CLK inhibitors. Altogether, these results pave the way for the development of inhibitors with novel selectivities in this family of kinases.


Protein Kinase Inhibitors , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
8.
Antibiotics (Basel) ; 11(10)2022 Oct 21.
Article En | MEDLINE | ID: mdl-36290107

Bacterial resistance represents a major health problem worldwide and there is an urgent need to develop first-in-class compounds directed against new therapeutic targets. We previously developed a drug-discovery platform to identify new antimicrobials able to disrupt the protein-protein interaction between the ß' subunit and the σ70 initiation factor of bacterial RNA polymerase, which is essential for transcription. As a follow-up to such work, we have improved the discovery strategy to make it less time-consuming and more cost-effective. This involves three sequential assays, easily scalable to a high-throughput format, and a subsequent in-depth characterization only limited to hits that passed the three tests. This optimized workflow, applied to the screening of 5360 small molecules from three synthetic and natural compound libraries, led to the identification of six compounds interfering with the ß'-σ70 interaction, and thus was capable of inhibiting promoter-specific RNA transcription and bacterial growth. Upon supplementation with a permeability adjuvant, the two most potent transcription-inhibiting compounds displayed a strong antibacterial activity against Escherichia coli with minimum inhibitory concentration (MIC) values among the lowest (0.87-1.56 µM) thus far reported for ß'-σ PPI inhibitors. The newly identified hit compounds share structural feature similarities with those of a pharmacophore model previously developed from known inhibitors.

9.
J Enzyme Inhib Med Chem ; 37(1): 1632-1650, 2022 Dec.
Article En | MEDLINE | ID: mdl-35670091

A library of substituted indolo[2,3-c]quinolone-6-ones was developed as simplified Lamellarin isosters. Synthesis was achieved from indole after a four-step pathway sequence involving iodination, a Suzuki-Miyaura cross-coupling reaction, and a reduction/lactamization sequence. The inhibitory activity of the 22 novel derivatives was assessed on Haspin kinase. Two of them possessed an IC50 of 1 and 2 nM with selectivity towards a panel of 10 other kinases including the parent kinases DYRK1A and CLK1. The most selective compound exerted additionally a very interesting cell effect on the osteosarcoma U-2 OS cell line.


Bone Neoplasms , Quinolones , Humans , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases , Quinolones/pharmacology , Structure-Activity Relationship
10.
Sci Rep ; 12(1): 5118, 2022 03 24.
Article En | MEDLINE | ID: mdl-35332201

Nigratine (also known as 6E11), a flavanone derivative of a plant natural product, was characterized as highly specific non-ATP competitive inhibitor of RIPK1 kinase, one of the key components of necroptotic cell death signaling. We show here that nigratine inhibited both necroptosis (induced by Tumor Necrosis Factor-α) and ferroptosis (induced by the small molecules glutamate, erastin, RSL3 or cumene hydroperoxide) with EC50 in the µM range. Taken together, our data showed that nigratine is a dual inhibitor of necroptosis and ferroptosis cell death pathways. These findings open potential new therapeutic avenues for treating complex necrosis-related diseases.


Ferroptosis , Apoptosis , Cell Death/physiology , Humans , Necroptosis , Necrosis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism
11.
Molecules ; 26(21)2021 Oct 30.
Article En | MEDLINE | ID: mdl-34770981

Pim kinases (proviral integration site for Moloney murine leukemia virus kinases) are overexpressed in various types of hematological malignancies and solid carcinomas, and promote cell proliferation and survival. Thus, Pim kinases are validated as targets for antitumor therapy. In this context, our combined efforts in natural product-inspired library generation and screening furnished very promising dibenzo[b,d]furan derivatives derived from cercosporamide. Among them, lead compound 44 was highlighted as a potent Pim-1/2 kinases inhibitor with an additional nanomolar IC50 value against CLK1 (cdc2-like kinases 1) and displayed a low micromolar anticancer potency towards the MV4-11 (AML) cell line, expressing high endogenous levels of Pim-1/2 kinases. The design, synthesis, structure-activity relationship, and docking studies are reported herein and supported by enzyme, cellular assays, and Galleria mellonella larvae testing for acute toxicity.


Antineoplastic Agents/pharmacology , Benzofurans/chemistry , Benzofurans/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzofurans/chemical synthesis , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Moths , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-pim-1/metabolism , Tumor Cells, Cultured
12.
Bioorg Med Chem Lett ; 52: 128375, 2021 11 15.
Article En | MEDLINE | ID: mdl-34560262

GSK-3ß directly phosphorylate tubulin binding site of tau protein, indicating its importance in tau aggregation and, therefore, in Alzheimer's disease pathology. New GSK-3ß inhibitors were identified using a structure-based screening, ADMET analysis. These studies revealed that ZINC09036109, ZINC72371723, ZINC72371725, and ZINC01373165 approached optimal ADMET properties along with good MM-GBSA dG binding. Protein kinase assays of these compounds against eight disease-relevant kinases were performed. During disease-relevant kinase profiling, ZINC09036109 ((E)-2-((3,4-dimethylphenyl)imino)-5-(3-methoxy-4-(naphthalen-2-ylmethoxy)benzyl)thiazolidin-4-one) emerged as a selective GSK-3ß inhibitor with more than 10-fold selectivity over other disease-relevant kinases. Molecular dynamics study of ZINC09036109 molecule revealed interactions with Ile62, Phe67, Val135, Leu188, Asp200 amino acid residues of the binding site of GSK-3ß, which were highly comparable to the co-crystallized molecule and hence validating comparative better activity of this compound compared to overall screened molecules.


Drug Discovery , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Neuroprotective Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Thiazolidines/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Thiazolidines/chemical synthesis , Thiazolidines/chemistry
13.
Chem Biol Interact ; 349: 109643, 2021 Nov 01.
Article En | MEDLINE | ID: mdl-34508710

Protein kinases, including CDK9/CyclinT and Haspin, are regarded as potential drug targets in cancer therapy. Findings from a previous study suggested 7-azaindole as a privileged scaffold for producing inhibitors of CDK9/CyclinT and Haspin. Inspired by these findings, the current study synthesised and evaluated thirteen (13) C6-substituted 7-azaindole and twenty (20) C4-substituted structurally related 7H-pyrrolo[2,3-d]pyrimidine derivatives against a panel of protein kinases, including CDK9/CyclinT and Haspin. Eleven of the 7H-pyrrolo[2,3-d]pyrimidine derivatives exhibited activity toward CDK9/CyclinT, while 4 of compounds had activity against Haspin. The best CDK9/CyclinT (IC50 of 0.38 µM) and Haspin (IC50 of 0.11 µM) activities were achieved by compounds 7d and 7f, respectively. Hence, these compounds may be valuable starting points for development of new anti-cancer drugs.


Cyclin T/antagonists & inhibitors , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Molecular Docking Simulation , Spectrum Analysis/methods
14.
Molecules ; 26(15)2021 Jul 29.
Article En | MEDLINE | ID: mdl-34361750

The purpose of this work is to investigate the protein kinase inhibitory activity of constituents from Acacia auriculiformis stem bark. Column chromatography and NMR spectroscopy were used to purify and characterize betulin from an ethyl acetate soluble fraction of acacia bark. Betulin, a known inducer of apoptosis, was screened against a panel of 16 disease-related protein kinases. Betulin was shown to inhibit Abelson murine leukemia viral oncogene homolog 1 (ABL1) kinase, casein kinase 1ε (CK1ε), glycogen synthase kinase 3α/ß (GSK-3 α/ß), Janus kinase 3 (JAK3), NIMA Related Kinase 6 (NEK6), and vascular endothelial growth factor receptor 2 kinase (VEGFR2) with activities in the micromolar range for each. The effect of betulin on the cell viability of doxorubicin-resistant K562R chronic myelogenous leukemia cells was then verified to investigate its putative use as an anti-cancer compound. Betulin was shown to modulate the mitogen-activated protein (MAP) kinase pathway, with activity similar to that of imatinib mesylate, a known ABL1 kinase inhibitor. The interaction of betulin and ABL1 was studied by molecular docking, revealing an interaction of the inhibitor with the ABL1 ATP binding pocket. Together, these data demonstrate that betulin is a multi-target inhibitor of protein kinases, an activity that can contribute to the anticancer properties of the natural compound and to potential treatments for leukemia.


Acacia/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Gene Expression Regulation, Leukemic/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Triterpenes/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Apoptosis/genetics , Binding Sites , Casein Kinase 1 epsilon/antagonists & inhibitors , Casein Kinase 1 epsilon/genetics , Casein Kinase 1 epsilon/metabolism , Cell Proliferation/drug effects , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Humans , Janus Kinase 3/antagonists & inhibitors , Janus Kinase 3/genetics , Janus Kinase 3/metabolism , K562 Cells , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Models, Molecular , NIMA-Related Kinases/antagonists & inhibitors , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism , Plant Bark/chemistry , Plant Extracts/chemistry , Protein Binding , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/isolation & purification , Proto-Oncogene Proteins c-abl/chemistry , Proto-Oncogene Proteins c-abl/genetics , Proto-Oncogene Proteins c-abl/metabolism , Signal Transduction , Triterpenes/chemistry , Triterpenes/isolation & purification , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
15.
Chem Biol Interact ; 343: 109478, 2021 Jul 01.
Article En | MEDLINE | ID: mdl-33905741

7-Azaindole has been labelled a privileged scaffold for the design of new potent inhibitors of protein kinases. In this paper, we determined the inhibition profiles of novel mono- and disubstituted derivatives of 7-azaindole-coumaranone hybrids on various disease-related protein kinases. Eight hit compounds were identified, including a potent Haspin inhibitor with an IC50 value of 0.15 µM. An interesting observation was that all active monosubstituted compounds displayed dual inhibition for Haspin and GSK-3ß, while disubstituted derivatives inhibited GSK-3ß and LmCK1 from Leishmania major parasite. Analyses of structure activity relationships (SARs) also revealed that mono-substitution with para-fluorobenzyloxy ring produced an equipotent inhibition of Haspin and GSK-3ß. Haspin and GSK-3ß are relevant targets for developing new anticancer agents while LmCK1 is an innovative target for leishmanicidal drugs. Novel compounds reported in this paper constitute promising starting points for the development of new anticancer and leishmanicidal drugs.


Aza Compounds/chemistry , Benzofurans/chemistry , Indoles/chemistry , Protein Kinase Inhibitors/chemistry , Animals , Aza Compounds/chemical synthesis , Aza Compounds/pharmacokinetics , Benzofurans/chemical synthesis , Benzofurans/pharmacokinetics , Enzyme Assays , Humans , Indoles/chemical synthesis , Indoles/pharmacokinetics , Leishmania major/enzymology , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Sf9 Cells , Spodoptera , Structure-Activity Relationship
16.
Molecules ; 26(4)2021 Feb 06.
Article En | MEDLINE | ID: mdl-33562106

Proviral integration site for Moloney murine leukemia virus (Pim)-1/2 kinase overexpression has been identified in a variety of hematologic (e.g., multiple myeloma or acute myeloid leukemia (AML)) and solid (e.g., colorectal carcinoma) tumors, playing a key role in cancer progression, metastasis, and drug resistance, and is linked to poor prognosis. These kinases are thus considered interesting targets in oncology. We report herein the design, synthesis, structure-activity relationships (SAR) and in vitro evaluations of new quinoxaline derivatives, acting as dual Pim1/2 inhibitors. Two lead compounds (5c and 5e) were then identified, as potent submicromolar Pim-1 and Pim-2 inhibitors. These molecules were also able to inhibit the growth of the two human cell lines, MV4-11 (AML) and HCT-116 (colorectal carcinoma), expressing high endogenous levels of Pim-1/2 kinases.


Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Quinoxalines/chemical synthesis , Quinoxalines/pharmacology , Chemistry Techniques, Synthetic , Humans , Molecular Docking Simulation , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-pim-1/chemistry , Proto-Oncogene Proteins c-pim-1/metabolism , Quinoxalines/chemistry , Quinoxalines/metabolism
17.
J Med Chem ; 64(2): 1197-1219, 2021 01 28.
Article En | MEDLINE | ID: mdl-33417773

Significant inhibition of Aurora B was achieved by the synthesis of simplified fragments of benzosceptrins and oroidin belonging to the marine pyrrole-2-aminoimidazoles metabolites isolated from sponges. Evaluation of kinase inhibition enabled the discovery of a synthetically accessible rigid acetylenic structural analogue EL-228 (1), whose structure could be optimized into the potent CJ2-150 (37). Here we present the synthesis of new inhibitors of Aurora B kinase, which is an important target for cancer therapy through mitosis regulation. The biologically oriented synthesis yielded several nanomolar inhibitors. The optimized compound CJ2-150 (37) showed a non-ATP competitive allosteric mode of action in a mixed-type inhibition for Aurora B kinase. Molecular docking identified a probable binding mode in the allosteric site "F" and highlighted the key interactions with the protein. We describe the improvement of the inhibitory potency and specificity of the novel scaffold as well as the characterization of the mechanism of action.


Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Aurora Kinase B/antagonists & inhibitors , Porifera/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Adenosine Triphosphate/metabolism , Allosteric Regulation , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Mitosis/drug effects , Models, Molecular , Molecular Docking Simulation , Structure-Activity Relationship
18.
Bioorg Med Chem ; 31: 115962, 2021 02 01.
Article En | MEDLINE | ID: mdl-33422908

We describe in this paper the synthesis of a novel series of anilino-2-quinazoline derivatives. These compounds have been screened against a panel of eight mammalian kinases and in parallel they were tested for cytotoxicity on a representative panel of seven cancer cell lines. One of them (DB18) has been found to be a very potent inhibitor of human "CDC2-like kinases" CLK1, CLK2 and CLK4, with IC50 values in the 10-30 nM range. Interestingly, this molecule is inactive at 100 µM on the closely related "dual-specificity tyrosine-regulated kinase 1A" (DYRK1A). Extensive molecular simulation studies have been performed on the relevant kinases to explain the strong affinity of this molecule on CLKs, as well as its selectivity against DYRK1A.


Antineoplastic Agents/pharmacology , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship , Dyrk Kinases
19.
Chem Biol Interact ; 333: 109316, 2021 Jan 05.
Article En | MEDLINE | ID: mdl-33285127

Streptomyces hygroscopicus UFPEDA 3370 was fermented in submerged cultivation and the biomass extract was partitioned, obtaining a fraction purified named EB1. After purification of EB1 fraction, nigericin free acid was obtained and identified. Nigericin presented cytotoxic activity against several cancer cell lines, being most active against HL-60 (human leukemia) and HCT-116 (human colon carcinoma) cell lines, presenting IC50 and (IS) values: 0.0014 µM, (30.0) and 0.0138 µM (3.0), respectively. On HCT-116, nigericin caused apoptosis and autophagy. In this study, nigericin was also screened both in vitro and in silico against a panel of cancer-related kinases. Nigericin was able to inhibit both JAK3 and GSK-3ß kinases in vitro and its binding affinities were mapped through the intermolecular interactions with each target in silico.


Antineoplastic Agents/pharmacology , Colorectal Neoplasms/pathology , Nigericin/pharmacology , Protein Kinase Inhibitors/pharmacology , Streptomyces/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Catalytic Domain , Cell Line, Tumor , Humans , Janus Kinase 3/antagonists & inhibitors , Janus Kinase 3/chemistry , Janus Kinase 3/metabolism , Molecular Docking Simulation , Nigericin/chemistry , Nigericin/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism
20.
Eur J Med Chem ; 210: 112956, 2021 Jan 15.
Article En | MEDLINE | ID: mdl-33148491

Leishmaniasis constitutes a severe public health problem, with an estimated prevalence of 12 million cases. This potentially fatal disease has a worldwide distribution and in 2012, the fatal Visceral Leishmaniasis (VL) was declared as new emerging disease in Europe, mainly due to global warming, with expected important public health impact. The available treatments are toxic, costly or lead to parasite resistance, thus there is an urgent need for new drugs with new mechanism of action. Previously, we reported the discovery of CTN1122, a potent imidazo[1,2-a]pyrazine-based antileishmanial hit compound targeting L-CK1.2 at low micromolar ranges. Here, we described structurally related, safe and selective compounds endowed with antiparasitic properties, better than miltefosine, the reference therapy by oral route. L-CK1.2 homology model gave the first structural explanations of the role of 4-pyridyl (CTN1122) and 2-aminopyrimidin-4-yl (compound 21) moieties, at the position 3 of the central core, in the low micromolar to nanomolar L-CK1.2 inhibition, whereas N-methylpyrazole derivative 11 remained inactive against the parasite kinase.


Casein Kinase I/antagonists & inhibitors , Imidazoles/pharmacology , Leishmania major/enzymology , Pyrazines/pharmacology , Trypanocidal Agents/pharmacology , Casein Kinase I/metabolism , Humans , Imidazoles/chemistry , Leishmania major/drug effects , Leishmania major/metabolism , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Models, Molecular , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrazines/chemistry , Trypanocidal Agents/chemistry
...