Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Front Endocrinol (Lausanne) ; 11: 566673, 2020.
Article En | MEDLINE | ID: mdl-33154737

Background and objective: The maternal glucose-insulin axis is central for metabolic adaptations required for a healthy pregnancy. Metabolic changes in obese mothers in early pregnancy have been scantly described. Here we characterized the glucose-insulin axis in the first trimester of human pregnancy and assessed the effect of maternal obesity and fat mass. Methods: In this cross-sectional study, maternal blood samples (N = 323) were collected during voluntary pregnancy termination (gestational age 4+0-11+6 weeks) after overnight fasting. Smokers (N = 198) were identified by self-report and serum cotinine levels (ELISA). Maternal BMI (kg/m2) and serum leptin (ELISA) were used as proxy measures of obesity and maternal fat mass, respectively. BMI was categorized into under-/normal weight (BMI < 25.0 kg/m2), overweight (BMI 25.0-29.9 kg/m2) and obese (BMI ≥ 30.0 kg/m2), and leptin in tertiles (1st tertile: leptin < 6.80 ng/ml, 2nd tertile: leptin 6.80-12.89 ng/ml, 3rd tertile: leptin > 12.89 ng/ml). ISHOMA insulin sensitivity index was calculated from glucose and C-peptide (ELISA) serum concentrations. Analyses of covariance including multiple confounders were performed to test for differences in glucose, C-peptide and ISHOMA between gestational age periods, BMI and leptin groups. C-peptide and ISHOMA were log-transformed before analyses. Results: At weeks 7-9, fasting glucose and C-peptide levels were lower (P < 0.01 and P < 0.001, respectively) and insulin sensitivity higher (P < 0.001) than at weeks 4-6. Glucose levels were not significantly different between BMI or leptin categories. In contrast, C-peptide increased by 19% (P < 0.01) between the normal weight and the overweight group and by 39% (P < 0.001) between the overweight and obese group. In the leptin groups, C-peptide increased by 25% (P < 0.001) between the 1st and 2nd leptin tertile and by 15% (P < 0.05) between the 2nd and 3rd leptin tertile. ISHOMA decreased with higher BMI and fat mass. ISHOMA decreased by 18% (P < 0.01) between the normal weight and the overweight group and by 30% (P < 0.01) between the overweight and the obese group. In the leptin groups, ISHOMA decreased by 22% (P < 0.001) between the 1st and 2nd leptin tertile and by 14% (P < 0.05) between the 2nd and 3rd leptin tertile. Conclusions: At the group level, fasting glucose, C-peptide and insulin sensitivity dynamically change in the first trimester of human pregnancy. Maternal obesity is associated with higher C-peptide and lower insulin sensitivity at all periods in the first trimester of human pregnancy, while glucose is unaltered. These findings have implications for the timing of early gestational diabetes mellitus risk screening.


Blood Glucose/metabolism , Body Mass Index , Insulin/blood , Obesity, Maternal/blood , Pregnancy Complications/blood , Pregnancy Trimester, First/blood , Adult , Cohort Studies , Cross-Sectional Studies , Fasting/blood , Female , Humans , Obesity, Maternal/epidemiology , Pregnancy , Pregnancy Complications/epidemiology , Young Adult
2.
Int J Mol Sci ; 21(2)2020 Jan 11.
Article En | MEDLINE | ID: mdl-31940810

In the first trimester of pregnancy, placental development involves a wide range of cellular processes. These include trophoblast proliferation, fusion, and differentiation, which are dependent on tight cell cycle control. The intrauterine environment affects placental development, which also includes the trophoblast cell cycle. In this work, we focus on maternal obesity to assess whether an altered intrauterine milieu modulates expression and protein levels of placental cell cycle regulators in early human pregnancy. For this purpose, we use first trimester placental tissue from lean and obese women (gestational week 5+0-11+6, n = 58). Using a PCR panel, a cell cycle protein array, and STRING database analysis, we identify a network of cell cycle regulators increased by maternal obesity in which breast cancer 1 (BRCA1) is a central player. Immunostaining localizes BRCA1 predominantly to the villous and the extravillous cytotrophoblast. Obesity-driven BRCA1 upregulation is not able to be explained by DNA methylation (EPIC array) or by short-term treatment of chorionic villous explants at 2.5% oxygen with tumor necrosis factor α (TNF-α) (50 mg/mL), leptin (100 mg/mL), interleukin 6 (IL-6) (100 mg/mL), or high glucose (25 nM). Oxygen tension rises during the first trimester, but this change in vitro has no effect on BRCA1 (2.5% and 6.5% O2). We conclude that maternal obesity affects placental cell cycle regulation and speculate this may alter placental development.


BRCA1 Protein/metabolism , Cell Cycle Proteins/metabolism , Obesity/metabolism , Pregnancy Complications/metabolism , Adult , BRCA1 Protein/genetics , Cell Cycle Proteins/genetics , Female , Glucose/metabolism , Humans , Interleukin-6/metabolism , Leptin/genetics , Leptin/metabolism , Obesity/genetics , Oxygen/metabolism , Pregnancy , Pregnancy Trimester, First/metabolism , Trophoblasts/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
...