Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Sci Total Environ ; 820: 153057, 2022 May 10.
Article En | MEDLINE | ID: mdl-35031374

BACKGROUND: Long-term road traffic noise exposure is linked to cardio-metabolic disease morbidity, whereas evidence on mortality remains limited. OBJECTIVES: We investigated association of long-term exposure to road traffic noise with all-cause and cause-specific mortality. METHODS: We linked 22,858 females from the Danish Nurse Cohort (DNC), recruited into the Danish Register of Causes of Death up to 2014. Road traffic noise levels since 1970 were modelled by Nord2000 as the annual mean of a weighted 24 h average (Lden). Cox regression models examined the associations between Lden (5-year and 23-year means) and all-cause and cause-specific mortalities, adjusting for lifestyle and exposure to PM2.5 (particulate matter with diameter < 2.5 µm) and NO2 (nitrogen dioxide). RESULTS: During follow-up (mean 17.4 years), 3902 nurses died: 1622 from cancer, 922 from CVDs (289 from stroke), 338 from respiratory diseases (186 from chronic obstructive pulmonary disease, 114 from lower respiratory tract infections [ALRIs]), 234 from dementia, 95 from psychiatric disorders, and 79 from diabetes. Hazard ratios (95% confidence intervals) for all-cause mortality from fully-adjusted models were 1.06 (1.01, 1.11) and 1.09 (1.03, 1.15) per 10 dB of 5-year and 23-year mean Lden, respectively, which attenuated slightly in our main model (fully-adjusted plus PM2.5: 1.04 [1.00, 1.10]; 1.08 [1.02, 1.13]). Main model estimates suggested the strongest associations between 5-year mean Lden and diabetes (1.14: 0.81, 1.61), ALRIs (1.13: 0.84, 1.54), dementia (1.12: 0.90, 1.38), and stroke (1.10: 0.91, 1.31), whereas associations with 23-year mean Lden were suggested for respiratory diseases (1.15: 0.95, 1.39), psychiatric disorders (1.11: 0.78, 1.59), and all cancers (1.08: 0.99, 1.17). DISCUSSION: Among the female nurses from the DNC, we observed that long-term exposure to road traffic noise led to premature mortality, independently of air pollution, and its adverse effects may extend well beyond those on the cardio-metabolic system to include respiratory diseases, cancer, neurodegenerative and psychiatric disorders.


Environmental Exposure , Noise, Transportation , Cause of Death , Cohort Studies , Denmark/epidemiology , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Female , Humans , Noise, Transportation/statistics & numerical data
2.
Environ Health ; 20(1): 115, 2021 11 06.
Article En | MEDLINE | ID: mdl-34740347

BACKGROUND: Road traffic noise has been linked to increased risk of ischemic heart disease, yet evidence on stroke shows mixed results. We examine the association between long-term exposure to road traffic noise and incidence of stroke, overall and by subtype (ischemic or hemorrhagic), after adjustment for air pollution. METHODS: Twenty-five thousand six hundred and sixty female nurses from the Danish Nurse Cohort recruited in 1993 or 1999 were followed for stroke-related first-ever hospital contact until December 31st, 2014. Full residential address histories since 1970 were obtained and annual means of road traffic noise (Lden [dB]) and air pollutants (particulate matter with diameter < 2.5 µm and < 10 µm [PM2.5 and PM10], nitrogen dioxide [NO2], nitrogen oxides [NOx]) were determined using validated models. Time-varying Cox regression models were used to estimate hazard ratios (HR) (95% confidence intervals [CI]) for the associations of one-, three-, and 23-year running means of Lden preceding stroke (all, ischemic or hemorrhagic), adjusting for stroke risk factors and air pollutants. The World Health Organization and the Danish government's maximum exposure recommendations of 53 and 58 dB, respectively, were explored as potential Lden thresholds. RESULTS: Of 25,660 nurses, 1237 developed their first stroke (1089 ischemic, 148 hemorrhagic) during 16 years mean follow-up. For associations between a 1-year mean of Lden and overall stroke incidence, the estimated HR (95% CI) in the fully adjusted model was 1.06 (0.98-1.14) per 10 dB, which attenuated to 1.01 (0.93-1.09) and 1.00 (0.91-1.09) in models further adjusted for PM2.5 or NO2, respectively. Associations for other exposure periods or separately for ischemic or hemorrhagic stroke were similar. There was no evidence of a threshold association between Lden and stroke. CONCLUSIONS: Long-term exposure to road traffic noise was suggestively positively associated with the risk of overall stroke, although not after adjusting for air pollution.


Environmental Exposure , Noise, Transportation , Stroke , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/statistics & numerical data , Cohort Studies , Denmark/epidemiology , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Female , Humans , Incidence , Noise, Transportation/adverse effects , Noise, Transportation/statistics & numerical data , Particulate Matter/analysis , Particulate Matter/toxicity , Stroke/epidemiology
3.
J Am Heart Assoc ; 10(20): e021436, 2021 10 19.
Article En | MEDLINE | ID: mdl-34612059

Background We examined the association of long-term exposure to air pollution and road traffic noise with incident heart failure (HF). Methods And Results Using data on female nurses from the Danish Nurse Cohort (aged >44 years), we investigated associations between 3-year mean exposures to air pollution and road traffic noise and incident HF using Cox regression models, adjusting for relevant confounders. Incidence of HF was defined as the first hospital contact (inpatient, outpatient, or emergency) between cohort baseline (1993 or 1999) and December 31, 2014, based on the Danish National Patient Register. Annual mean levels of particulate matter with a diameter <2.5 µm since 1990 and NO2 and road traffic noise since 1970 were estimated at participants' residences. Of the 22 189 nurses, 484 developed HF. We detected associations with all 3 pollutants, with hazard ratios (HRs) of 1.17 (95% CI, 1.01-1.36), 1.10 (95% CI, 0.99-1.22), and 1.12 (95% CI, 0.99-1.26) per increase of 5.1 µg/m3 in particulate matter with a diameter <2.5 µm, 8.6 µg/m3 in NO2, and 9.3 dB in road traffic noise, respectively. We observed an enhanced risk of HF incidence for those exposed to high levels of the 3 pollutants; however, the effect modification of coexposure was not statistically significant. Former smokers and nurses with hypertension showed the strongest associations with particulate matter with a diameter <2.5 µm (Peffect modification<0.05). Conclusions We found that long-term exposures to air pollution and road traffic noise were independently associated with HF.


Air Pollution , Environmental Exposure , Heart Failure , Noise, Transportation , Air Pollution/adverse effects , Cohort Studies , Denmark/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Female , Heart Failure/epidemiology , Humans , Incidence , Middle Aged , Noise, Transportation/adverse effects , Nurses/statistics & numerical data
4.
Environ Health Perspect ; 129(8): 87002, 2021 08.
Article En | MEDLINE | ID: mdl-34338552

BACKGROUND: Associations between long-term exposure to air pollution and road traffic noise have been established for ischemic heart disease, but findings have been mixed for atrial fibrillation (AF). OBJECTIVES: The goal of the study was to examine associations of long-term exposure to road traffic noise and air pollution with AF. METHODS: Time-varying Cox regression models were used to estimate associations of 1-, 3-, and 23-y mean road traffic noise and air pollution exposures with AF incidence in 23,528 women enrolled in the Danish Nurse Cohort (age >44y at baseline in 1993 or 1999). AF diagnoses were ascertained via the Danish National Patient Register. Annual mean weighted 24-h average road traffic noise levels (Lden) at the nurses' residences, since 1970, were estimated using the Nord2000 model, and annual mean levels of particulate matter with a diameter <2.5µm (PM2.5) and nitrogen dioxide (NO2) were estimated using the DEHM/UBM/AirGIS model. RESULTS: Of 23,528 nurses with no prior AF diagnosis at the cohort baseline, 1,522 developed AF during follow-up. In a fully adjusted model (including PM2.5), the estimated risk of AF was 18% higher [hazard ratio (HR); 95% confidence interval (CI): 1.18; 1.02, 1.36] in nurses with residential 3-y mean Lden levels >58 dB vs. <48 dB, with similar findings for 1-y mean exposures. A 3.9-µg/m3 increase in 3-y mean PM2.5 was associated with incident AF before and after adjustment for concurrent exposure to road traffic noise (HR 1.09; 95% CI: 1.00, 1.20 and 1.08; 95% CI: 0.97, 1.19, respectively). Associations with 1-y mean PM2.5 exposures were positive but closer to the null and not significant. Associations with NO2 were null for all time periods before and after adjustment for road traffic noise and inverse when adjusted for concurrent PM2.5. CONCLUSION: Our analysis of prospective data from a cohort of Danish female nurses followed for up to 14 y provided suggestive evidence of independent associations between incident AF and 1- and 3-y exposures to road traffic noise and PM2.5. https://doi.org/10.1289/EHP8090.


Air Pollutants , Air Pollution , Atrial Fibrillation , Noise, Transportation , Air Pollutants/analysis , Air Pollution/analysis , Atrial Fibrillation/epidemiology , Denmark/epidemiology , Environmental Exposure/analysis , Female , Humans , Noise, Transportation/adverse effects , Particulate Matter/analysis , Prospective Studies
5.
Eur Respir J ; 58(6)2021 12.
Article En | MEDLINE | ID: mdl-33986028

BACKGROUND: While air pollution has been linked to the development of chronic obstructive pulmonary disease (COPD), evidence on the role of environmental noise is just emerging. We examined the associations of long-term exposure to air pollution and road traffic noise with COPD incidence. METHODS: We defined COPD incidence for 24 538 female nurses from the Danish Nurse Cohort (age >44 years) as the first hospital contact between baseline (1993 or 1999) and 2015. We estimated residential annual mean concentrations of particulate matter with an aerodynamic diameter <2.5 µm (PM2.5) since 1990 and nitrogen dioxide (NO2) since 1970 using the Danish Eulerian Hemispheric Model/Urban Background Model/Air Geographic Information System modelling system, and road traffic noise (Lden) since 1970 using the Nord2000 model. Time-varying Cox regression models were applied to assess the associations of air pollution and road traffic noise with COPD incidence. RESULTS: 977 nurses developed COPD during a mean of 18.6 years' follow-up. We observed associations with COPD for all three exposures with HRs and 95% CIs of 1.19 (1.01-1.41) per 6.26 µg·m-3 for PM2.5, 1.13 (1.05-1.20) per 8.19 µg·m-3 for NO2 and 1.15 (1.06-1.25) per 10 dB for Lden. Associations with NO2 and Lden attenuated slightly after mutual adjustment, but were robust to adjustment for PM2.5. Associations with PM2.5 were attenuated to null after adjustment for either NO2 or Lden. No potential interaction effect was observed between air pollutants and noise. CONCLUSION: Long-term exposure to air pollution, especially traffic-related NO2, and to road traffic noise were independently associated with COPD.


Air Pollutants , Air Pollution , Noise, Transportation , Pulmonary Disease, Chronic Obstructive , Adult , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/statistics & numerical data , Denmark/epidemiology , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Female , Humans , Nitrogen Dioxide/analysis , Noise, Transportation/statistics & numerical data , Particulate Matter/analysis , Particulate Matter/toxicity , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/etiology
6.
Environ Epidemiol ; 5(3): e148, 2021 Jun.
Article En | MEDLINE | ID: mdl-33912785

BACKGROUND: Evidence of nonauditory health effects of road traffic noise exposure is growing. This prospective cohort study aimed to estimate the association between long-term exposure to road traffic noise above a threshold and incident myocardial infarction (MI) in Denmark. METHODS: In the Danish Nurse Cohort study, we used data of 22,378 women, at recruitment in 1993 and 1999, who reported information on MI risk factors. The participants' first hospital contact or out-of-hospital death due to MI were followed-up until 2014. We investigated a relationship between residential exposures to road traffic noise levels (Lden) up to 23 years and incident MI (overall, nonfatal, and fatal) using time-varying Cox regression models adjusting for potential confounders and air pollutants. We estimated thresholds of road traffic noise (53, 56, and 58 dB) associated with incident MI in a piece-wise linear regression model. RESULTS: Of the 22,378 participants, 633 developed MI, 502 of which were nonfatal. We observed a non-linear relationship between the 23-year running mean of Lden and incident MI with a threshold level of 56 dB, above which hazard ratios (95% confidence intervals) were 1.30 (0.97, 1.75) for overall and 1.46 (1.05, 2.03) for nonfatal MI per 10 dB. The association with nonfatal MI attenuated slightly to 1.34 (0.95, 1.90) after adjustment for fine particles. CONCLUSIONS: We found that long-term exposure to road traffic noise above 56 dB may increase the risk of MI. The study findings suggest that road traffic noise above 56 dB may need regulation in addition to the regulation of ambient pollutants.

7.
Environ Int ; 152: 106464, 2021 07.
Article En | MEDLINE | ID: mdl-33684733

BACKGROUND: Ambient air pollution is likely a risk factor for asthma, and recent evidence suggests the possible relevance of road traffic noise. OBJECTIVES: We examined the associations of long-term exposure to air pollution and road traffic noise with adult-asthma incidence. METHODS: We followed 28,731 female nurses (age > 44 years) from the Danish Nurse Cohort, recruited in 1993 and 1999, for first hospital contact for asthma from 1977 until 2015. We estimated residential annual mean concentrations of particulate matter with diameter < 2.5 µm (PM2.5) since 1990 and nitrogen dioxide (NO2) since 1970 with the Danish DEHM/UBM/AirGIS modeling system, and road traffic noise (Lden) since 1970 with the Nord2000 model. Time-varying Cox regression models were used to associate air pollution and road traffic noise exposure with asthma incidence. RESULTS: During 18.6 years' mean follow-up, 528 out of 23,093 participants had hospital contact for asthma. The hazard ratios (HR) and 95% confidence intervals for asthma incidence associated with 3-year moving average exposures were 1.29 (1.03, 1.61) per 6.3 µg/m3 for PM2.5, 1.16 (1.07, 1.27) per 8.2 µg/m3 for NO2, and 1.12 (1.00, 1.25) per 10 dB for Lden. The HR for NO2 remained unchanged after adjustment for either PM2.5 or Lden, while the HRs for PM2.5 and Lden attenuated to unity after adjustment for NO2. CONCLUSIONS: Long-term exposure to air pollution was associated with adult-asthma incidence independently of road traffic noise, with NO2 most relevant. Road traffic noise was not independently associated with adult-asthma incidence.


Air Pollutants , Air Pollution , Asthma , Noise, Transportation , Adult , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Asthma/epidemiology , Asthma/etiology , Denmark/epidemiology , Environmental Exposure/analysis , Female , Humans , Incidence , Noise, Transportation/adverse effects , Particulate Matter/analysis
8.
Environ Res ; 194: 110631, 2021 03.
Article En | MEDLINE | ID: mdl-33345898

BACKGROUND: Knowledge of the role of melatonin, xenograft experiments, and epidemiological studies suggests that exposure to light at night (LAN) may disturb circadian rhythms, possibly increasing the risk of developing breast cancer. OBJECTIVES: We examined the association between residential outdoor LAN and the incidence of breast cancer: overall and subtypes classified by estrogen (ER) and progesterone (PR) receptor status. METHODS: We used data on 16,941 nurses from the Danish Nurse Cohort who were followed-up from the cohort baseline in 1993 or 1999 through 2012 in the Danish Cancer Registry for breast cancer incidence and the Danish Breast Cancer Cooperative Group for breast cancer ER and PR status. LAN exposure data were obtained from the U.S. Defense Meteorological Satellite Program (DMSP) available for 1996, 1999, 2000, 2003, 2004, 2006, and 2010 in nW/cm2/sr unit, and assigned to the study participants' residence addresses during the follow-up. Time-varying Cox regression models were used to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between LAN and breast cancer, adjusting for individual characteristics, road traffic noise, and air pollution. RESULTS: Of 16,941 nurses, 745 developed breast cancer in total during 320,289 person-years of follow-up. We found no association between exposure to LAN and overall breast cancer. In the fully adjusted models, HRs for the highest (65.8-446.4 nW/cm2/sr) and medium (22.0-65.7 nW/cm2/sr) LAN tertiles were 0.97 (95% CI: 0.77, 1.23) and 1.09 (95% CI: 0.90, 1.31), respectively, compared to the lowest tertile of LAN exposure (0-21.9 nW/cm2/sr). We found a suggestive association between LAN and ER-breast cancer. CONCLUSION: This large cohort study of Danish female nurses suggests weak evidence of the association between LAN and breast cancer incidence.


Breast Neoplasms , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Circadian Rhythm , Cohort Studies , Denmark/epidemiology , Female , Humans , Incidence , Light , Risk Factors
9.
Environ Int ; 143: 105983, 2020 10.
Article En | MEDLINE | ID: mdl-32736159

BACKGROUND: The association between air pollution and mortality is well established, yet some uncertainties remain: there are few studies that account for road traffic noise exposure or that consider in detail the shape of the exposure-response function for cause-specific mortality outcomes, especially at low-levels of exposure. OBJECTIVES: We examined the association between long-term exposure to particulate matter [(PM) with a diameter of <2.5 µm (PM2.5), <10 µm (PM10)], and nitrogen dioxide (NO2) and total and cause-specific mortality, accounting for road traffic noise. METHODS: We used data on 24,541 females (age > 44 years) from the Danish Nurse Cohort, who were recruited in 1993 or 1999, and linked to the Danish Causes of Death Register for follow-up on date of death and its cause, until the end of 2013. Annual mean concentrations of PM2.5, PM10, and NO2 at the participants' residences since 1990 were estimated using the Danish DEHM/UBM/AirGIS dispersion model, and annual mean road traffic noise levels (Lden) were estimated using the Nord2000 model. We examined associations between the three-year running mean of PM2.5, PM10, and NO2 with total and cause-specific mortality by using time-varying Cox Regression models, adjusting for individual characteristics and residential road traffic noise. RESULTS: During the study period, 3,708 nurses died: 843 from cardiovascular disease (CVD), 310 from respiratory disease (RD), and 64 from diabetes. In the fully adjusted models, including road traffic noise, we detected associations of three-year running mean of PM2.5 with total (hazard ratio; 95% confidence interval: 1.06; 1.01-1.11), CVD (1.14; 1.03-1.26), and diabetes mortality (1.41; 1.05-1.90), per interquartile range of 4.39 µg/m3. In a subset of the cohort exposed to PM2.5 < 20 µg/m3, we found even stronger association with total (1.19; 1.11-1.27), CVD (1.27; 1.01-1.46), RD (1.27; 1.00-1.60), and diabetes mortality (1.44; 0.83-2.48). We found similar associations with PM10 and none with NO2. All associations were robust to adjustment for road traffic noise. DISCUSSION: Long-term exposure to low-levels of PM2.5 and PM10 is associated with total mortality, and mortality from CVD, RD, and diabetes. Associations were even stronger at the PM2.5 levels below EU limit values and were independent of road traffic noise.


Air Pollutants , Air Pollution , Noise, Transportation , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cohort Studies , Denmark/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Female , Humans , Noise, Transportation/adverse effects , Particulate Matter/adverse effects , Particulate Matter/analysis
10.
Environ Int ; 142: 105891, 2020 09.
Article En | MEDLINE | ID: mdl-32593048

Ambient air pollution has been linked to stroke, but few studies have examined in detail stroke subtypes and confounding by road traffic noise, which was recently associated with stroke. Here we examined the association between long-term exposure to air pollution and incidence of stroke (overall, ischemic, hemorrhagic), adjusting for road traffic noise. In a nationwide Danish Nurse Cohort consisting of 23,423 nurses, recruited in 1993 or 1999, we identified 1,078 incident cases of stroke (944 ischemic and 134 hemorrhagic) up to December 31, 2014, defined as first-ever hospital contact. The full residential address histories since 1970 were obtained for each participant and the annual means of air pollutants (particulate matter with diameter < 2.5 µm and < 10 µm (PM2.5 and PM10), nitrogen dioxide (NO2), nitrogen oxides (NOx)) and road traffic noise were determined using validated models. Time-varying Cox regression models were used to estimate hazard ratios (HR) (95% confidence intervals (CI)) for the associations of one-, three, and 23-year running mean of air pollutants with stroke adjusting for potential confounders and noise. In fully adjusted models, the HRs (95% CI) per interquartile range increase in one-year running mean of PM2.5 and overall, ischemic, and hemorrhagic stroke were 1.12 (1.01-1.25), 1.13 (1.01-1.26), and 1.07 (0.80-1.44), respectively, and remained unchanged after adjustment for noise. Long-term exposure to ambient PM2.5 was associated with the risk of stroke independent of road traffic noise.


Air Pollutants , Air Pollution , Stroke , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Cohort Studies , Denmark/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Humans , Incidence , Nitrogen Dioxide/analysis , Particulate Matter/analysis , Stroke/epidemiology , Stroke/etiology
11.
Environ Health Perspect ; 128(5): 57003, 2020 05.
Article En | MEDLINE | ID: mdl-32438827

BACKGROUND: Air pollution exposure has been linked to coronary heart disease, although evidence on PM2.5 and myocardial infarction (MI) incidence is mixed. OBJECTIVES: This prospective cohort study aimed to investigate associations between long-term exposure to air pollution and MI incidence, adjusting for road traffic noise. METHODS: We used data from the nationwide Danish Nurse Cohort on 22,882 female nurses (>44 years of age) who, at recruitment in 1993 or 1999, reported information on cardiovascular disease risk factors. Data on MI incidence was collected from the Danish National Patient Register until the end of 2014. Annual mean concentrations of particulate matter (PM) with a diameter <2.5 µg/m3 (PM2.5), PM10, nitrogen dioxide (NO2), and nitrogen oxides (NOx) at the nurses' residences since 1990 (PM10 and PM2.5) or 1970 (NO2 and NOx) were estimated using the Danish Eulerian Hemispheric Model/Urban Background Model/AirGIS (DEHM/UBM/AirGIS) dispersion model. We used time-varying Cox regression models to examine the association between 1- and 3-y running means of these pollutants, as well as 23-y running means of NO2 and NOx, with both overall and fatal incident MI. Associations were explored in three progressively adjusted models: Model 1, adjusted for age and baseline year; Model 2, with further adjustment for potential confounding by lifestyle and cardiovascular disease risk factors; and Model 3, with further adjustment for road traffic noise, modeled as the annual mean of a weighted 24-h average (Lden). RESULTS: Of the 22,882 women, 641 developed MI during a mean follow-up of 18.6 y, 121 (18.9%) of which were fatal. Reported hazard ratios (HRs) were based on interquartile range increases of 5.3, 5.5, 8.1, and 11.5 µg/m3 for PM2.5, PM10, NO2, and NOx, respectively. In Model 1, we observed a positive association between a 3-y running mean of PM2.5 and an overall incident MI with an HR= 1.20 (95% CI: 1.07, 1.35), which attenuated to HR= 1.06 (95% CI: 0.92, 1.23) in Model 2. In Model 1 for incident fatal MI, we observed a strong association with a 3-y running mean of PM2.5, with an HR= 1.69 (95% CI: 1.33, 2.13), which attenuated to HR= 1.35 (95% CI: 1.01, 1.81) in Model 2. Similar associations were seen for PM10, with 3-y, Model 2 estimates for overall and fatal incident MI of HR= 1.06 (95% CI: 0.91, 1.23) and HR= 1.35 (95% CI: 1.01, 1.81), respectively. No evidence of an association was observed for NO2 or NOx. For all pollutants, associations in Model 2 were robust to further adjustment for road traffic noise in Model 3 and were similar for a 1-y running mean exposure. CONCLUSIONS: We found no association between long-term exposure to PM2.5, PM10, NO2, or NOx and overall MI incidence, but we observed positive associations for PM2.5 and PM10 with fatal MI. We present novel findings that the association between PM and MI incidence is robust to adjustment for road traffic noise. https://doi.org/10.1289/EHP5818.


Air Pollution/statistics & numerical data , Environmental Exposure/statistics & numerical data , Myocardial Infarction/epidemiology , Nurses/statistics & numerical data , Adult , Air Pollutants , Cohort Studies , Denmark/epidemiology , Female , Humans , Male , Middle Aged , Nitrogen Dioxide , Particulate Matter , Proportional Hazards Models
12.
Environ Int ; 130: 104915, 2019 09.
Article En | MEDLINE | ID: mdl-31344645

BACKGROUND: The potential health effects related to wind turbine noise (WTN) have received increased focus during the past decades, but evidence is sparse. We examined the association between long-term exposure to wind turbine noise and incidence of atrial fibrillation (AF). METHODS: First ever hospital admission of AF amongst 28,731 female nurses in the Danish Nurse Cohort were identified in the Danish National Patient register until ultimo 2013. WTN levels at residential addresses between 1982 and 2013 were estimated using the Nord2000 noise propagation model, as the annual means of Lden, Lday, Levening and Lnight at the most exposed façade. Time-varying Cox proportional hazard regression models were used to examine the association between the 11-, 5- and 1-year rolling means of WTN levels and AF incidence. RESULTS: 1430 nurses developed AF by end of follow-up in 2013. Mean (standard deviation) baseline residential noise levels amongst exposed nurses were 26.3 (6.7) dB and slightly higher in those who developed AF (27.3 (7.31) dB), than those who didn't (26.2 (6.6)). We observed a 30% statistically significant increased risk (95% CI: 1.05-1.61) of AF amongst nurses exposed to long-term (11-year running mean) WTN levels ≥20 dB(A) at night compared to nurses exposed to levels <20 dB(A). Similar effects were observed with day (HR 1.25; 95% CI: 1.01-1.54), and evening (HR 1.25; 95% CI: 1.01-1.54) noise levels. CONCLUSIONS: We found suggestive evidence of an association between long-term exposure to WTN and AF amongst female nurses. However, interpretation should be cautious as exposure levels were low.


Atrial Fibrillation/epidemiology , Environmental Exposure/adverse effects , Noise/adverse effects , Nurses/statistics & numerical data , Wind , Aged , Atrial Fibrillation/etiology , Cohort Studies , Denmark/epidemiology , Electric Power Supplies , Female , Hospitalization/statistics & numerical data , Humans , Incidence , Middle Aged , Risk Factors
13.
J Am Heart Assoc ; 8(14): e013157, 2019 07 16.
Article En | MEDLINE | ID: mdl-31310571

Background Epidemiological studies suggest that road traffic noise increases the risk of stroke. Similar effects may be expected from wind turbine noise (WTN) exposure, but epidemiological evidence is lacking. The present study investigated the association between long-term exposure to WTN and the risk for stroke. Methods and Results First-ever stroke in 28 731 female nurses in the Danish Nurse Cohort was identified in the Danish National Patient register until the end of 2013. WTN, traffic noise, and air pollution exposures were estimated for all historic and present residential addresses between 1982 and 2013. Time-varying Cox proportional hazard regression was used to examine the associations between the 11-, 5-, and 1-year rolling means of WTN levels and stroke incidence. Of 23 912 nurses free of stroke at the cohort baseline, 1097 nurses developed stroke by the end of follow-up. At the cohort baseline, 10.3% of nurses were exposed to WTN (≥1 turbine within a 6000-meter radius of the residence) and 13.3% in 2013. Mean baseline residential noise levels among exposed nurses were 26.3 dB(A). No association between long-term WTN exposure and stroke incidence was found. The adjusted hazard ratios and 95% CIs for the 11-, 5-, and 1-year running mean residential WTN exposures preceding stroke diagnosis, comparing nurses with residential WTN levels above and below 20 dB(A) were 1.09 (0.90-1.31), 1.08 (0.89-1.31) and 1.08 (0.89-1.32), respectively. Conclusions This comprehensive cohort study lends no support to an association between long-term WTN exposure and stroke risk.


Environmental Exposure/statistics & numerical data , Noise , Stroke/epidemiology , Wind , Aged , Cohort Studies , Denmark/epidemiology , Female , Humans , Middle Aged , Noise, Transportation/statistics & numerical data , Proportional Hazards Models , Renewable Energy , Residence Characteristics , Risk Factors , Traffic-Related Pollution/statistics & numerical data
14.
Environ Health Perspect ; 127(5): 57006, 2019 05.
Article En | MEDLINE | ID: mdl-31084449

BACKGROUND: Evidence on the association between road traffic noise and diabetes risk is sparse and inconsistent with respect to how confounding by air pollution was treated. OBJECTIVES: In this study, we aimed to examine whether long-term exposure to road traffic noise over 25 years is associated with incidence of diabetes, independent of air pollution. METHODS: A total of 28,731 female nurses from the Danish Nurse cohort ([Formula: see text] at recruitment in 1993 or 1999) were linked to the Danish National Diabetes Register with information on incidence of diabetes from 1995 until 2013. The annual mean weighted levels of 24-h average road traffic noise ([Formula: see text]) at nurses' residences from 1970 until 2013 were estimated with the Nord2000 method and annual mean levels of particulate matter (PM) with diameter [Formula: see text] and [Formula: see text] ([Formula: see text] and [Formula: see text]), nitrogen dioxide ([Formula: see text]), and nitrogen oxide ([Formula: see text]) with the Danish AirGIS modeling system. Cox proportional hazards regression models were used to examine the association between residential [Formula: see text] in four different exposure windows (1-, 5-, 10-, and 25-years) and the incidence of diabetes, adjusted for lifestyle factors and air pollutants. RESULTS: Of 23,762 nurses free of diabetes at the cohort baseline, 1,158 developed diabetes during a mean follow-up of 15.2 years. We found weak positive associations between 5-y mean exposure to [Formula: see text] (per [Formula: see text] increase) and diabetes incidence in a crude model [hazard ratio (HR): 1.07; 95% confidence interval (CI): 0.99, 1.12], which attenuated in a model adjusted for lifestyle factors (HR:1.04; 95% CI: 0.97, 1.12), and reached unity after additional adjustment for [Formula: see text] (HR: 0.99; 0.91, 1.08). In analyses by level of urbanization, we found a positive association between noise and diabetes in urban areas (HR:1.27; 95% CI: 0.98, 1.63) that was unchanged after adjusting for [Formula: see text] (HR: 1.25; 95% CI: 0.97, 1.62), but we found no apparent association in provincial (HR: 1.02; 95% CI: 0.88, 1.18) or rural areas (HR: 0.97; 95% CI: 0.87, 1.08). CONCLUSION: In the nationwide cohort of Danish nurses 44 years of age and older, we found no association between long-term exposure to road traffic noise and diabetes incidence after adjustment for [Formula: see text] but found suggestive evidence of an association limited to urban areas. https://doi.org/10.1289/EHP4389.


Diabetes Mellitus/epidemiology , Environmental Exposure/adverse effects , Noise, Transportation/adverse effects , Adult , Aged , Air Pollutants/analysis , Cohort Studies , Denmark/epidemiology , Diabetes Mellitus/etiology , Female , Humans , Incidence , Middle Aged
15.
Environ Res ; 172: 502-510, 2019 05.
Article En | MEDLINE | ID: mdl-30852453

BACKGROUND: Studies have suggested that traffic noise is associated with markers of obesity. We investigated the association of exposure to road traffic noise with body mass index (BMI) and waist circumference in the Danish Nurse Cohort. METHODS: We used data on 15,501 female nurses (aged >44 years) from the nationwide Danish Nurse Cohort who, in 1999, reported information on self-measured height, weight, and waist circumference, together with information on socioeconomic status, lifestyle, work and health. Road traffic noise at the most exposed façade of the residence was estimated using Nord2000 as the annual mean of a weighted 24-h average (Lden). We used multiple linear regression models to examine associations of road traffic noise levels in 1999 (1-year mean) with BMI and waist circumference, adjusting for potential confounders, and evaluated effect modification by degree of urbanization, air pollution levels, night shift work, job strain, sedative use, sleep aid use, and family history of obesity. RESULTS: We did not observe associations between road traffic noise (per 10 dB increase in the 1-year mean Lden) and BMI (kg/m2) (ß: 0.00; 95% confidence interval (CI): -0.07, 0.07) or waist circumference (cm) (ß: -0.09; 95% CI: -0.31, 0.31) in the fully adjusted model. We found significant effect modification of job strain and degree of urbanization on the associations between Lden and both BMI and waist circumference. Job strained nurses were associated with a 0.41 BMI-point increase, (95% CI: 0.06, 0.76) and a 1.00 cm increase in waist circumference (95% CI: 0.00, 2.00). Nurses living in urban areas had a statistically significant positive association of Lden with BMI (ß: 0.26; 95% CI: 0.11, 0.42), whilst no association was found for nurses living in suburban and rural areas. CONCLUSION: Our results suggest that road traffic noise exposure in nurses with particular susceptibilities, such as those with job strain, or living in urban areas, may lead to increased BMI, a marker of adiposity.


Adiposity , Body Mass Index , Noise, Transportation , Waist Circumference , Adult , Cross-Sectional Studies , Denmark , Environmental Exposure , Female , Humans , Obesity/diagnosis
16.
Breast Cancer Res ; 20(1): 119, 2018 10 05.
Article En | MEDLINE | ID: mdl-30290832

BACKGROUND: Exposure to road traffic noise was associated with increased risk of estrogen receptor (ER)-negative (ER-) breast cancer in a previous cohort study, but not with overall or ER-positive (ER+) breast cancer, or breast cancer prognosis. We examined the association between long-term exposure to road traffic noise and incidence of breast cancer, overall and by ER and progesterone receptor (PR) status. METHODS: We used the data from a nationwide Danish Nurse Cohort on 22,466 female nurses (age > 44 years) who at recruitment in 1993 or 1999 reported information on breast cancer risk factors. We obtained data on the incidence of breast cancer from the Danish Cancer Registry, and on breast cancer subtypes by ER and PR status from the Danish Breast Cancer Cooperative Group, up to 31 December 2012. Road traffic noise levels at the nurses' residences were estimated by the Nord2000 method between 1970 and 2013 as annual means of a weighted 24 h average (Lden) at the most exposed facade. We used time-varying Cox regression to analyze the associations between the 24-year, 10-year, and 1-year mean of Lden and breast cancer, separately for total breast cancer and by ER and PR status. RESULTS: Of the 22,466 women, 1193 developed breast cancer in total during 353,775 person-years of follow up, of whom 611 had complete information on ER and PR status. For each 10 dB increase in 24-year mean noise levels at their residence, we found a statistically significant 10% (hazard ratio and 95% confidence interval 1.10; 1.00-1.20) increase in total breast cancer incidence and a 17% (1.17; 1.02-1.33) increase in analyses based on 611 breast cancer cases with complete ER and PR information. We found positive, statistically significant association between noise levels and ER+ (1.23; 1.06-1.43, N = 494) but not ER- (0.93; 0.70-1.25, N = 117) breast cancers, and a stronger association between noise levels and PR+ (1.21; 1.02-1.42, N = 393) than between noise levels and PR- (1.10; 0.89-1.37, N = 218) breast cancers. Association between noise and ER+ breast cancer was statistically significantly stronger in nurses working night shifts (3.36; 1.48-7.63) than in those not working at night (1.21; 1.02-1.43) (p value for interaction = 0.05). CONCLUSION: Long-term exposure to road traffic noise may increase risk of ER+ breast cancer.


Breast Neoplasms/etiology , Noise, Transportation/adverse effects , Nurses/statistics & numerical data , Registries/statistics & numerical data , Breast Neoplasms/epidemiology , Breast Neoplasms/metabolism , Cohort Studies , Denmark/epidemiology , Female , Humans , Incidence , Middle Aged , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Risk Assessment/methods , Risk Assessment/statistics & numerical data , Risk Factors , Time Factors
17.
Environ Int ; 121(Pt 1): 794-802, 2018 12.
Article En | MEDLINE | ID: mdl-30336413

BACKGROUND: Growing evidence supports the concept that traffic noise exposure leads to long-term health complications other than annoyance, including cardiovascular disease. Similar effects may be expected from wind turbine noise exposure, but evidence is sparse. Here, we examined the association between long-term exposure to wind turbine noise and incidence of myocardial infarction (MI). METHODS: We used the Danish Nurse Cohort with 28,731 female nurses and obtained data on incidence of MI in the Danish National Patient and Causes of Death Registries until ultimo 2013. Wind turbine noise levels at residential addresses between 1982 and 2013 were estimated using the Nord2000 noise propagation model, as the annual means of a weighted 24-hour average (Lden) at the most exposed façade. Time-varying Cox proportional hazard regression was used to examine the association between the 11-, 5- and 1-year rolling means prior to MI diagnosis of wind turbine noise levels and MI incidence. RESULTS: Of 23,994 nurses free of MI at cohort baseline, 686 developed MI by end of follow-up in 2013. At the cohort baseline (1993 or 1999), 10.4% nurses were exposed to wind turbine noise (≥1 turbine within a 6000-m radius of the residence) and 13.3% in 2013. Mean baseline residential noise levels among exposed nurses were 26.3 dB, higher in those who developed MI (26.6 dB) than among those who didn't develop MI (26.3 dB). We found no association between wind turbine noise and MI incidence: adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) comparing nurses with 11-years mean residential noise levels of <21.5 dB, 21.5-25.4 dB, 25.4-29.9 dB, and >29.9 dB, to non-exposed nurses were 0.89 (0.64-1.25), 1.20 (0.82-1.77), 1.38 (0.95-2.01), and 0.88 (0.53-1.28), respectively. Corresponding HR (95% CI) for the linear association between 11-year mean levels of wind turbine noise (per 10 dB increase) with MI incidence was 0.99 (0.77-1.28). Similar associations were observed when considering the 5- and 1-year running means, and with no evidence of dose-response. CONCLUSIONS: The results of this comprehensive cohort study lend little support to a causal association between outdoor long-term wind-turbine noise exposure and MI. However, there were only few cases in the highest exposure groups and our findings need reproduction.


Myocardial Infarction/epidemiology , Noise/adverse effects , Power Plants , Denmark/epidemiology , Incidence , Myocardial Infarction/etiology , Prospective Studies , Renewable Energy , Risk , Seasons , Time Factors , Wind
...