Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37836643

RESUMEN

Isoxazolo[3,4-d] pyridazinones ([3,4-d]s) were previously shown to have selective positive modulation at the metabotropic glutamate receptor (mGluR) Subtypes 2 and 4, with no functional cross-reactivity at mGluR1a, mGluR5, or mGluR8. Additional analogs were prepared to access more of the allosteric pocket and achieve higher binding affinity, as suggested by homology modeling. Two different sets of analogs were generated. One uses the fully formed [3,4-d] with an N6-aryl with and without halogens. These underwent successful selective lateral metalation and electrophilic quenching (LM&EQ) at the C3 of the isoxazole. In a second set of analogs, a phenyl group was introduced at the C4 position of the [3,4-d] ring via a condensation of 4-phenylacetyl-3-ethoxcarbonyl-5-methyl isoxazole with the corresponding hydrazine to generate the 3,4-ds 2b and 2j to 2n.


Asunto(s)
Modelos Químicos , Simulación de Dinámica Molecular , Regulación Alostérica , Benzamidas , Isoxazoles/farmacología
2.
Expert Opin Ther Targets ; 27(4-5): 361-371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37243607

RESUMEN

BACKGROUND: The Polycomb Repressor Complex 1 (PRC1) is an epigenetic regulator of differentiation and development, consisting of multiple subunits including RING1, BMI1, and Chromobox. The composition of PRC1 dictates its function and aberrant expression of specific subunits contributes to several diseases including cancer. Specifically, the reader protein Chromobox2 (CBX2) recognizes the repressive modifications including histone H3 lysine 27 tri-methylation (H3K27me3) and H3 lysine 9 dimethylation (H3K9me2). CBX2 is overexpressed in several cancers compared to the non-transformed cell counterparts, it promotes both cancer progression and chemotherapy resistance. Thus, inhibiting the reader function of CBX2 is an attractive and unique anti-cancer approach. RESEARCH DESIGN & METHODS: Compared with other CBX family members, CBX2 has a unique A/T-hook DNA binding domain that is juxtaposed to the chromodomain (CD). Using a computational approach, we constructed a homology model of CBX2 encompassing the CD and A/T hook domain. We used the model as a basis for peptide design and identified blocking peptides that are predicted to directly bind the CD and A/T-hook regions of CBX2. These peptides were tested in vitro and in vivo models. CONCLUSION: The CBX2 blocking peptide significantly inhibited both 2D and 3D growth of ovarian cancer cells, downregulated a CBX2 target gene, and blunted tumor growth in vivo.


Asunto(s)
Neoplasias , Complejo Represivo Polycomb 1 , Humanos , Complejo Represivo Polycomb 1/metabolismo , Lisina , Proteínas del Grupo Polycomb , Péptidos
3.
Bioorg Med Chem ; 69: 116911, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35792402

RESUMEN

A series of 10-alkoxy-Anthryl-isoxazole-pyrrole-doubletails (RO-AIMs) were synthesized using a crown ether assisted nucleophilic aromatic substitution followed by a modified Schotten-Baumann reaction. The novel RO-AIMs described here exhibit robust growth inhibition for the human SNB19 CNS glioblastoma cell line, and biphenyl analog 8c had activity in the nanomolar regime, which represents the most efficacious compound in the AIM series to date. Computational modeling for RO-AIMs binding in a ternary complex with c-myc quadruplex DNA and its helicase DHX36 is presented which represents our current working hypothesis.


Asunto(s)
G-Cuádruplex , Glioblastoma , Alcoholes , Línea Celular , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Humanos , Isoxazoles
4.
Nat Commun ; 13(1): 2542, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538051

RESUMEN

Statins are a class of drug widely prescribed for the prevention of cardiovascular disease, with pleiotropic cellular effects. Statins inhibit HMG-CoA reductase (HMGCR), which converts the metabolite HMG-CoA into mevalonate. Recent discoveries have shown HMG-CoA is a reactive metabolite that can non-enzymatically modify proteins and impact their activity. Therefore, we predicted that inhibition of HMGCR by statins might increase HMG-CoA levels and protein modifications. Upon statin treatment, we observe a strong increase in HMG-CoA levels and modification of only a single protein. Mass spectrometry identifies this protein as fatty acid synthase (FAS), which is modified on active site residues and, importantly, on non-lysine side-chains. The dynamic modifications occur only on a sub-pool of FAS that is located near HMGCR and alters cellular signaling around the ER and Golgi. These results uncover communication between cholesterol and lipid biosynthesis by the substrate of one pathway inhibiting another in a rapid and reversible manner.


Asunto(s)
Enfermedades Cardiovasculares , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedades Cardiovasculares/prevención & control , Colesterol/metabolismo , Ácido Graso Sintasas , Humanos , Hidroximetilglutaril-CoA Reductasas/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Ácido Mevalónico/metabolismo
5.
J Biol Chem ; 298(4): 101723, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35157847

RESUMEN

A wide range of protein acyl modifications has been identified on enzymes across various metabolic processes; however, the impact of these modifications remains poorly understood. Protein glutarylation is a recently identified modification that can be nonenzymatically driven by glutaryl-CoA. In mammalian systems, this unique metabolite is only produced in the lysine and tryptophan oxidative pathways. To better understand the biology of protein glutarylation, we studied the relationship between enzymes within the lysine/tryptophan catabolic pathways, protein glutarylation, and regulation by the deglutarylating enzyme sirtuin 5 (SIRT5). Here, we identify glutarylation on the lysine oxidation pathway enzyme glutaryl-CoA dehydrogenase (GCDH) and show increased GCDH glutarylation when glutaryl-CoA production is stimulated by lysine catabolism. Our data reveal that glutarylation of GCDH impacts its function, ultimately decreasing lysine oxidation. We also demonstrate the ability of SIRT5 to deglutarylate GCDH, restoring its enzymatic activity. Finally, metabolomic and bioinformatic analyses indicate an expanded role for SIRT5 in regulating amino acid metabolism. Together, these data support a feedback loop model within the lysine/tryptophan oxidation pathway in which glutaryl-CoA is produced, in turn inhibiting GCDH function via glutaryl modification of GCDH lysine residues and can be relieved by SIRT5 deacylation activity.


Asunto(s)
Glutaril-CoA Deshidrogenasa , Lisina , Sirtuinas , Animales , Glutaril-CoA Deshidrogenasa/metabolismo , Lisina/metabolismo , Ratones , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Sirtuinas/metabolismo , Triptófano/metabolismo
6.
Data Brief ; 38: 107433, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34632023

RESUMEN

The RSK2 kinase is a downstream effector of the Ras/Raf/MEK/ERK pathway that is aberrantly active in a range of cancer types and has been recognized an anticancer target. The inhibition of RSK2 kinase activity would disrupt multiple pro-cancer processes; however, there are few RSK2 inhibitors. The data have been obtained for a series of pteridinone-, pyrimidine-, purine-, and pyrrolopyrimidine-based compounds, developed to establish a structure-activity relationship for RSK inhibition. The compounds were docked into the ATP-binding site of the N-terminal domain of the RSK2 kinase using Glide. The binding conformations of these molecules was then used to generate a set of pharmacophore models to determine the structural requirements for RSK2 inhibition. Through the combination of these models, common features (pharmacophores) can be identified that can inform the development of further small molecule RSK inhibitors. The synthesis and evaluation of the pteridinone- and pyrimidine-based compounds was reported in the related articles: Substituted pteridinones as p90 ribosomal S6 protein kinase (RSK) inhibitors: A structure-activity study (Casalvieri et al., 2020) and Molecular docking of substituted pteridinones and pyrimidines to the ATP-binding site of the N-terminal domain of RSK2 and associated MM/GBSA and molecular field datasets (Casalvieri et al., 2020). [1], [2]. The synthesis and evaluation of the purine- and pyrrolopyrimidine-based compounds was reported in the related research article: N-substituted pyrrolopyrimidines and purines as p90 ribosomal S6 protein kinase-2 (RSK2) inhibitors (Casalvieri et al., 2021) [3].

7.
ACS Chem Neurosci ; 12(18): 3477-3486, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34472849

RESUMEN

A number of studies have shown high levels of thymidine phosphorylase (TP) expression in glioblastoma (GBM), with trace or undetectable TP levels in normal developed brain tissue. TP catalyzes the reversible phosphorolysis of thymidine to thymine and 2-deoxyribose-1-phosphate, maintaining nucleoside homeostasis for efficient DNA replication and cell division. The TP-mediated catabolism of thymidine is responsible for multiple protumor processes and can support angiogenesis, glycation of proteins, and alternative metabolism. In this study, we examined the effect of TP inhibition in GBM using the known nanomolar TP inhibitors 5-chloro-6-[1-(2'-iminopyrrolidin-1'-yl)methyl]uracil (TPI) and the analogous 6-[(2'-aminoimidazol-1'-yl)methyl]uracils. Although these TP inhibitors did not demonstrate any appreciable cytotoxicity in GBM cell lines as single agents, they did enhance the cytotoxicity of temozolomide (TMZ). This pontetiated action of TMZ by TP inhibition may be due to limiting the availability of thymine for DNA repair and replication. These studies support that TP inhibitors could be used as chemosensitizing agents in GBM to improve the efficacy of TMZ.


Asunto(s)
Glioblastoma , Timidina Fosforilasa , Línea Celular , Glioblastoma/tratamiento farmacológico , Humanos , Temozolomida/farmacología , Uracilo
8.
Bioorg Med Chem ; 41: 116220, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34034149

RESUMEN

The RSK2 kinase is the downstream effector of the Ras/Raf/MEK/ERK pathway, that is often aberrantly activated in acute myeloid leukemia (AML). Recently, we reported a structure-activity study for BI-D1870, the pan-RSK inhibitor, and identified pteridinones that inhibited cellular RSK2 activity that did not result in concomitant cytotoxicity. In the current study, we developed a series of pyrrolopyrimidines and purines to replace the pteridinone ring of BI-D1870, with a range of N-substituents that extend to the substrate binding site to probe complementary interactions, while retaining the 2,6-difluorophenol-4-amino group to maintain interactions with the hinge domain and the DFG motif. Several compounds inhibited cellular RSK2 activity, and we identified compounds that uncoupled cellular RSK2 inhibition from potent cytotoxicity in the MOLM-13 AML cell line. These N-substituted probes have revealed an opportunity to further examine substituents that extend from the ATP- to the substrate-binding site may confer improved RSK potency and selectivity.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Purinas/química , Purinas/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Pirroles/química , Pirroles/farmacología , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Dominio Catalítico , Línea Celular , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica
9.
Am J Respir Cell Mol Biol ; 64(6): 669-676, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33406369

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic interstitial lung disease with underlying mechanisms that have been primarily investigated in mice after intratracheal instillation of a single dose of bleomycin. However, the model has significant limitations, including transient fibrosis that spontaneously resolves and its failure to fully recapitulate the epithelial remodeling in the lungs of patients with IPF. Thus, there remains an unmet need for a preclinical model with features that more closely resemble the human disease. Repetitive intratracheal instillation of bleomycin has previously been shown to recapitulate some of these features, but the instillation procedure is complex, and the long-term consequences on epithelial remodeling and fibrosis persistence and progression remain poorly understood. Here, we developed a simplified repetitive bleomycin instillation strategy consisting of three bi-weekly instillations that leads to persistent and progressive pulmonary fibrosis. Lung histology demonstrates increased collagen deposition, fibroblast accumulation, loss of type I and type II alveolar epithelial cells within fibrotic areas, bronchiolization of the lung parenchyma with CCSP+ cells, remodeling of the distal lung into cysts reminiscent of simple honeycombing, and accumulation of hyperplastic transitional KRT8+ epithelial cells. Micro-computed tomographic imaging demonstrated significant traction bronchiectasis and subpleural fibrosis. Thus, the simplified repetitive bleomycin instillation strategy leads to progressive fibrosis and recapitulates the histological and radiographic characteristics of IPF. Compared with the single bleomycin instillation model, we suggest that the simplified repetitive instillation model may be better suited to address mechanistic questions about IPF pathogenesis and preclinical studies of antifibrotic drug candidates.


Asunto(s)
Células Epiteliales/patología , Fibrosis Pulmonar Idiopática/patología , Animales , Bleomicina , Progresión de la Enfermedad , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Imagenología Tridimensional , Masculino , Ratones Endogámicos C57BL , Microtomografía por Rayos X
10.
Front Immunol ; 11: 584364, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329557

RESUMEN

Cyropyrin-associated periodic syndromes (CAPS) are clinically distinct syndromes that encompass a phenotypic spectrum yet are caused by alterations in the same gene, NLRP3. Many CAPS cases and other NLRP3-autoinflammatory diseases (NLRP3-AIDs) are directly attributed to protein-coding alterations in NLRP3 and the subsequent dysregulation of the NLRP3 inflammasome leading to IL-1ß-mediated inflammatory states. Here, we used bioinformatics tools, computational modeling, and computational assessments to explore the proteomic consequences of NLRP3 mutations, which potentially drive NLRP3 inflammasome dysregulation. We analyzed 177 mutations derived from familial cold autoinflammatory syndrome (FCAS), Muckle-Wells Syndrome (MWS), and the non-hereditary chronic infantile neurologic cutaneous and articular syndrome, also known as neonatal-onset multisystem inflammatory disease (CINCA/NOMID), as well as other NLRP3-AIDs. We found an inverse relationship between clinical severity and the severity of predicted structure changes resulting from mutations in NLRP3. Bioinformatics tools and computational modeling revealed that NLRP3 mutations that are predicted to be structurally severely-disruptive localize around the ATP binding pocket and that specific proteo-structural changes to the ATP binding pocket lead to enhanced ATP binding affinity by altering hydrogen-bond and charge interactions. Furthermore, we demonstrated that NLRP3 mutations that are predicted to be structurally mildly- or moderately-disruptive affect protein-protein interactions, such as NLRP3-ASC binding and NLRP3-NLRP3 multimerization, enhancing inflammasome formation and complex stability. Taken together, we provide evidence that proteo-structural mechanisms can explain multiple mechanisms of inflammasome activation in NLRP3-AID.


Asunto(s)
Adenosina Trifosfato/genética , Síndromes Periódicos Asociados a Criopirina/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Biología Computacional , Humanos , Inflamasomas/genética , Mutación/genética , Mapas de Interacción de Proteínas/genética , Proteómica/métodos
11.
Bioorg Med Chem ; 28(22): 115781, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33038788

RESUMEN

A novel series of anthracenyl-isoxazole amide (AIM) antitumor agents containing N-heterocycles in the 10 position (N-het) were synthesized using palladium cross-coupling. The unique steric environment of the N-het-AIMs required individual optimization in each case. Lanthanide mediated double activation was used to couple the dimethylamino pyrrole moiety, required for antitumor action. Robust antitumor activity was observed against breast and brain cancer cell lines. The compounds were docked with the c-myc oncogene promoter sequence, which adopts a G4 quadruplex DNA conformation, and represents the working hypothesis for biological action. The N-het-AIMs have useful fluorescence properties, allowing for observation of their distribution within tumor cells.


Asunto(s)
Amidas/farmacología , Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Fluorescencia , Compuestos Heterocíclicos/farmacología , Isoxazoles/farmacología , Amidas/síntesis química , Amidas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/química , Humanos , Isoxazoles/síntesis química , Isoxazoles/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
12.
J Cell Biochem ; 121(12): 4887-4897, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32628320

RESUMEN

Elevated cellular oxidative stress and oxidative DNA damage are key contributors to impaired cardiac function in diabetes. During chronic inflammation, reactive oxygen species (ROS)-induced lipid peroxidation results in the formation of reactive aldehydes, foremost of which is 4-hydroxy-2-nonenal (4HNE). 4HNE forms covalent adducts with proteins, negatively impacting cellular protein function. During conditions of elevated oxidative stress, oxidative DNA damage such as modification by 8-hydroxydeoxyguanosine (8OHdG) is repaired by 8-oxoguanine glycosylase-1 (OGG-1). Based on these facts, we hypothesized that 4HNE forms adducts with OGG-1 inhibiting its activity, and thus, increases the levels of 8OHG in diabetic heart tissues. To test our hypothesis, we evaluated OGG-1 activity, 8OHG and 4HNE in the hearts of leptin receptor deficient db/db mice, a type-2 diabetic model. We also treated the recombinant OGG-1 with 4HNE to measure direct adduction. We found decreased OGG-1 activity (P > .05), increased 8OHG (P > .05) and increased 4HNE adducts (P > .05) along with low aldehyde dehydrogenase-2 activity (P > .05). The increased colocalization of OGG-1 and 4HNE in cardiomyocytes suggest 4HNE adduction on OGG-1. Furthermore, colocalization of 8OHG and OGG-1 with mitochondrial markers TOM 20 and aconitase, respectively, indicated significant levels of oxidatively-induced mtDNA damage and implicated a role for mitochondrial OGG-1 function. In vitro exposure of recombinant OGG-1 (rOGG-1) with increasing concentrations of 4HNE resulted in a concentration-dependent decrease in OGG-1 activity. Mass spectral analysis of trypsin digests of 4HNE-treated rOGG-1 identified 4HNE adducts on C28, C75, C163, H179, H237, C241, K249, H270, and H282. In silico molecular modeling of 4HNE-K249 OGG-1 and 4HNE-H270 OGG-1 mechanistically supported 4HNE-mediated enzymatic inhibition of OGG-1. In conclusion, these data support the hypothesis that inhibition of OGG-1 by direct modification by 4HNE contributes to decreased OGG-1 activity and increased 8OHG-modified DNA that are present in the diabetic heart.

13.
Eur J Med Chem ; 197: 112316, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32334266

RESUMEN

AMP-activated protein kinase (AMPK) is a central metabolic regulator that promotes cancer growth and survival under hypoxia and plays a role in the maintenance of cancer stem cells. A major challenge to interrogating the potential of targeting AMPK in cancer is the lack of potent and selective small molecule inhibitors. Compound C has been widely used as an AMPK inhibitor, but it lacks potency and has a poor selectivity profile. The multi-kinase inhibitor, sunitinib, has demonstrated potent nanomolar inhibition of AMPK activity and has scope for modification. Here, we have designed and synthesized several series of oxindoles to determine the structural requirements for AMPK inhibition and to improve selectivity. We identified two potent, novel oxindole-based AMPK inhibitors that were designed to interact with the DFG motif in the ATP-binding site of AMPK, this key feature evades interaction with the common recptor tyrosine kinase targets of sunitinib. Cellular engagement of AMPK by these oxindoles was confirmed by the inhibition of phosphorylation of acetyl-CoA carboxylase (ACC), a known substrate of AMPK, in myeloid leukemia cells. Interestingly, although AMPK is highly expressed and activated in K562 cells these oxindole-based AMPK inhibitors did not impact cell viability or result in significant cytotoxicity. Our studies serve as a platform for the further development of oxindole-based AMPK inhibitors with therapeutic potential.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/farmacología , Oxindoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas Activadas por AMP/química , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células K562 , Simulación del Acoplamiento Molecular , Oxindoles/síntesis química , Oxindoles/metabolismo , Unión Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/metabolismo
14.
Data Brief ; 29: 105347, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32211459

RESUMEN

The data have been obtained for a series of substituted pteridinones and pyrimidines that were developed based on BI-D1870 to establish a structure-activity relationship for RSK inhibition. The 19 compounds, 12 of these with R- and S-isomeric forms, were docked into the ATP-binding site of the N-terminal domain of the RSK2 kinase using Schrodinger Glide. The binding conformations of these molecules and their interactions with RSK2 may inform the development of further small molecule RSK inhibitors. The molecular mechanics energies combined with the generalized Born and surface area continuum solvation (MM-BGSA) method was used to estimate the free energy of binding of the small molecules with RSK2. The molecular field characteristics of the docked confirmations of the inhibitors was examined using Cresset Forge software. The synthesis and evaluation of these compounds was reported in the related research article: Substituted pteridinones as p90 ribosomal S6 protein kinase 2 (RSK2) inhibitors: a structure-activity study (Casalvieri et al., 2020).

15.
Bioorg Med Chem ; 28(5): 115303, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31982240

RESUMEN

The activity of p90 ribosomal S6 kinase 2 (RSK2) has emerged as an attractive target for cancer therapy due to its role in the regulation of diverse cellular processes, such as cell transformation and proliferation. Several pan-RSK inhibitors have been identified with BI-D1870 and the pseudo-analogs LJH685 and LJI308 being the most selective, potent, and frequently used small molecule inhibitors. We designed and synthesized a series of pteridinones and pyrimidines to evaluate the structural features of BI-D1870 that are required for RSK2 inhibition. We have identified inhibitors of RSK2 activity, evaluated their target engagement in cells, and measured their effect on cell viability and cytotoxicity in the MOLM-13 acute myeloid leukemia (AML) cell line. The results of our studies support that RSK2 inhibition can be achieved in MOLM-13 cells without potent cytotoxicity. The structure-activity data from this study will be used as a platform to develop novel RSK2 inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pteridinas/farmacología , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pteridinas/síntesis química , Pteridinas/química , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Relación Estructura-Actividad
16.
Res Pract Thromb Haemost ; 2(4): 800-811, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30349899

RESUMEN

INTRODUCTION: Fibrinogen is a complex molecule comprised of two sets of Aα, Bß, and γ chains. Fibrinogen deficiencies can lead to the development of bleeding or thromboembolic events. The objective of this study was to perform DNA sequence analysis of patients with clinical fibrinogen abnormalities, and to perform genotype-phenotype correlations. MATERIALS AND METHODS: DNA from 31 patients was sequenced to evaluate disease-causing mutations in the three fibrinogen genes: FGA,FGB, and FGG. Clinical data were extracted from medical records or from consultation with referring hematologists. Fibrinogen antigen and functional (Clauss method) assays, as well as reptilase time (RT) and thrombin time (TT) were obtained for each patient. Molecular modeling was used to simulate the functional impact of specific missense variants on the overall protein structure. RESULTS: Seventeen mutations, including six novel mutations, were identified in the three fibrinogen genes. There was little correlation between genotype and phenotype. Molecular modeling predicted a substantial conformational change for a novel variant, FGG p.Ala289Asp, leading to a more rigid molecule in a region critical for polymerization and alignment of the fibrin monomers. This mutation is associated with both bleeding and clotting in the two affected individuals. CONCLUSIONS: Robust genotype-phenotype correlations are difficult to establish for fibrinogen disorders. Molecular modeling might represent a valuable tool for understanding the function of certain missense fibrinogen mutations but those should be followed by functional studies. It is likely that genetic and environmental modifiers account for the incomplete penetrance and variable expressivity that characterize fibrinogen disorders.

17.
Mol Pharmacol ; 94(4): 1174-1186, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30111648

RESUMEN

Inflammatory activation of glial cells promotes loss of dopaminergic neurons in Parkinson disease. The transcription factor nuclear factor κB (NF-κB) regulates the expression of multiple neuroinflammatory cytokines and chemokines in activated glial cells that are damaging to neurons. Thus, inhibition of NF-κB signaling in glial cells could be a promising therapeutic strategy for the prevention of neuroinflammatory injury. Nuclear orphan receptors in the NR4A family, including NR4A1 (Nur77) and NR4A2 (Nurr1), can inhibit the inflammatory effects of NF-κB, but no approved drugs target these receptors. Therefore, we postulated that a recently developed NR4A receptor ligand, 1,1bis (3'indolyl) 1(pmethoxyphenyl) methane (C-DIM5), would suppress NF-κB-dependent inflammatory gene expression in astrocytes after treatment with 1-methyl-4-phenyl 1, 2, 3, 6-tetrahydropyridine (MPTP) and the inflammatory cytokines interferon γ and tumor necrosis factor α C-DIM5 increased expression of Nur77 mRNA and suppressed expression of multiple neuroinflammatory genes. C-DIM5 also inhibited the expression of NFκB-regulated inflammatory and apoptotic genes in quantitative polymerase chain reaction array studies and effected p65 binding to unique genes in chromatin immunoprecipitation next-generation sequencing experiments but did not prevent p65 translocation to the nucleus, suggesting a nuclear-specific mechanism. C-DIM5 prevented nuclear export of Nur77 in astrocytes induced by MPTP treatment and simultaneously recruited Nurr1 to the nucleus, consistent with known transrepressive properties of this receptor. Combined RNAi knockdown of Nur77 and Nurr1 inhibited the anti-inflammatory activity of C-DIM5, demonstrating that C-DIM5 requires these receptors to inhibit NF-κB. Collectively, these data demonstrate that NR4A1/Nur77 and NR4A2/Nurr1 dynamically regulated inflammatory gene expression in glia by modulating the transcriptional activity of NF-κB.


Asunto(s)
Astrocitos/fisiología , Inflamación/genética , FN-kappa B/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Transducción de Señal/genética , Animales , Apoptosis/genética , Núcleo Celular/genética , Citocinas/genética , Neuronas Dopaminérgicas/fisiología , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos/genética , Neuroglía/fisiología , Transcripción Genética/genética , Factor de Necrosis Tumoral alfa/genética
18.
Bioorg Med Chem ; 26(17): 4797-4803, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30143366

RESUMEN

Isoxazolo[3,4-d] pyridazinones ([3,4-d]s) are selective positive modulators of the metabotropic glutamate receptors (mGluRs) subtypes 2 and 4, with no functional cross reactivity at mGluR1a, mGLuR5 or mGluR8. Modest binding for two of the [3,4-d]s is observed at the allosteric fenobam mGluR5 site, but not sufficient to translate into a functional effect. The structure activity relationship (SAR) for mGluR2 and mGluR4 are distinct: the compounds which select for mGluR2 all contain fluorine on the N-6 aryl group. Furthermore, the [3,4-d]s in this study showed no significant binding at inhibitory GABAA, nor excitatory NMDA receptors, and previously we had disclosed that they lack significant activity at the System Xc-Antiporter. A homology model based on Conn's mGluR1 crystal structure was examined, and suggested explanations for a preference for allosteric over orthosteric binding, subtype selectivity, and suggested avenues for optimization of efficacy as a reasonable working hypothesis.


Asunto(s)
Isoxazoles/química , Piridazinas/química , Piridazinas/farmacología , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Regulación Alostérica , Animales , Receptores de Glutamato Metabotrópico/química , Relación Estructura-Actividad
19.
ChemMedChem ; 13(16): 1681-1694, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-29883531

RESUMEN

WEE1 kinase regulates the G2 /M cell-cycle checkpoint, a critical mechanism for DNA repair in cancer cells that can confer resistance to DNA-damaging agents. We previously reported a series of pyrazolopyrimidinones based on AZD1775, a known WEE1 inhibitor, as an initial investigation into the structural requirements for WEE1 inhibition. Our lead inhibitor demonstrated WEE1 inhibition in the same nanomolar range as AZD1775, and potentiated the effects of cisplatin in medulloblastoma cells, but had reduced single-agent cytotoxicity. These results prompted the development of a more comprehensive series of WEE1 inhibitors. Herein we report a series of pyrazolopyrimidinones and identify a more potent WEE1 inhibitor than AZD1775 and additional compounds that demonstrate that WEE1 inhibition can be achieved with reduced single-agent cytotoxicity. These studies support that WEE1 inhibition can be uncoupled from the potent cytotoxic effects observed with AZD1775, and this may have important ramifications in the clinical setting where WEE1 inhibitors are used as chemosensitizers for DNA-targeted chemotherapy.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirazoles/farmacología , Pirimidinas/farmacología , Pirimidinonas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Antineoplásicos/toxicidad , Sitios de Unión , Proteína Quinasa CDC2/química , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Pruebas de Enzimas , Humanos , Estructura Molecular , Proteínas Nucleares/química , Fosforilación/efectos de los fármacos , Unión Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/toxicidad , Proteínas Tirosina Quinasas/química , Pirazoles/síntesis química , Pirazoles/metabolismo , Pirazoles/toxicidad , Pirimidinas/síntesis química , Pirimidinas/metabolismo , Pirimidinas/toxicidad , Pirimidinonas/síntesis química , Pirimidinonas/metabolismo , Pirimidinonas/toxicidad , Relación Estructura-Actividad
20.
J Pharmacol Exp Ther ; 365(3): 636-651, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29626009

RESUMEN

The orphan nuclear receptor Nurr1 (also called nuclear receptor-4A2) regulates inflammatory gene expression in glial cells, as well as genes associated with homeostatic and trophic function in dopaminergic neurons. Despite these known functions of Nurr1, an endogenous ligand has not been discovered. We postulated that the activation of Nurr1 would suppress the activation of glia and thereby protect against loss of dopamine (DA) neurons after subacute lesioning with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our previous studies have shown that a synthetic Nurr1 ligand, 1,1-bis(3'-indolyl)-1-(p-chlorophenyl)methane (C-DIM12), suppresses inflammatory gene expression in primary astrocytes and induces a dopaminergic phenotype in neurons. Pharmacokinetic analysis of C-DIM12 in mice by liquid chromatography-mass spectrometry demonstrated that approximately three times more compound concentrated in the brain than in plasma. Mice treated with four doses of MPTP + probenecid over 14 days were monitored for neurobehavioral function, loss of dopaminergic neurons, and glial activation. C-DIM12 protected against the loss of DA neurons in the substantia nigra pars compacta and DA terminals in the striatum, maintained a ramified phenotype in microglia, and suppressed activation of astrocytes. In vitro reporter assays demonstrated that C-DIM12 was an effective activator of Nurr1 transcription in neuronal cell lines. Computational modeling of C-DIM12 binding to the three-dimensional structure of human Nurr1 identified a high-affinity binding interaction with Nurr1 at the coactivator domain. Taken together, these data suggest that C-DIM12 is an activator of Nurr1 that suppresses glial activation and neuronal loss in vivo after treatment with MPTP, and that this receptor could be an efficacious target for disease modification in individuals with Parkinson's disease and related disorders.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Indoles/metabolismo , Indoles/farmacología , Neuroglía/efectos de los fármacos , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Recuento de Células , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Regulación de la Expresión Génica/efectos de los fármacos , Indoles/farmacocinética , Indoles/uso terapéutico , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Neuroglía/patología , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacocinética , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Fenotipo , Transducción de Señal/efectos de los fármacos , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA