Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chromosome Res ; 32(2): 7, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702576

RESUMEN

Species frequently differ in the number and structure of chromosomes they harbor, but individuals that are heterozygous for chromosomal rearrangements may suffer from reduced fitness. Chromosomal rearrangements like fissions and fusions can hence serve as a mechanism for speciation between incipient lineages, but their evolution poses a paradox. How can rearrangements get fixed between populations if heterozygotes have reduced fitness? One solution is that this process predominantly occurs in small and isolated populations, where genetic drift can override natural selection. However, fixation is also more likely if a novel rearrangement is favored by a transmission bias, such as meiotic drive. Here, we investigate chromosomal transmission distortion in hybrids between two wood white (Leptidea sinapis) butterfly populations with extensive karyotype differences. Using data from two different crossing experiments, we uncover that there is a transmission bias favoring the ancestral chromosomal state for derived fusions, a result that shows that chromosome fusions actually can fix in populations despite being counteracted by meiotic drive. This means that meiotic drive not only can promote runaway chromosome number evolution and speciation, but also that it can be a conservative force acting against karyotypic change and the evolution of reproductive isolation. Based on our results, we suggest a mechanistic model for why chromosome fusion mutations may be opposed by meiotic drive and discuss factors contributing to karyotype evolution in Lepidoptera.


Asunto(s)
Mariposas Diurnas , Meiosis , Animales , Mariposas Diurnas/genética , Meiosis/genética , Hibridación Genética , Cariotipo , Cromosomas de Insectos/genética , Femenino , Masculino
2.
Evolution ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813673

RESUMEN

The faster-Z/X hypothesis predicts that sex-linked genes should diverge faster than autosomal genes. However, studies across different lineages have shown mixed support for this effect. So far, most analyses have focused on old and well differentiated sex chromosomes, but less is known about divergence of more recently acquired neo-sex chromosomes. In Lepidoptera (moths and butterflies), Z-autosome fusions are frequent, but the evolutionary dynamics of neo-Z chromosomes have not been explored in detail. Here, we analysed the faster-Z effect in Leptidea sinapis, a butterfly with three Z chromosomes. We show that the neo-Z chromosomes have been acquired stepwise, resulting in strata of differentiation and masculinization. While all Z chromosomes showed evidence of the faster-Z effect, selection for genes on the youngest neo-Z chromosome (Z3) appears to have been hampered by a largely intact, homologous neo-W chromosome. However, the intermediately aged neo-Z chromosome (Z2), which lacks W gametologs, showed less evolutionary constraints, resulting in particularly fast evolution. Our results therefore support that neo-sex chromosomes can constitute temporary hot-spots of adaptation and divergence. The underlying dynamics are likely causally linked to shifts in selective constraints, evolution of gene expression, and degeneration of W-linked gametologs which gradually expose Z-linked genes to selection.

3.
Genome Biol Evol ; 16(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38368625

RESUMEN

The clouded apollo (Parnassius mnemosyne) is a palearctic butterfly distributed over a large part of western Eurasia, but population declines and fragmentation have been observed in many parts of the range. The development of genomic tools can help to shed light on the genetic consequences of the decline and to make informed decisions about direct conservation actions. Here, we present a high-contiguity, chromosome-level genome assembly of a female clouded apollo butterfly and provide detailed annotations of genes and transposable elements. We find that the large genome (1.5 Gb) of the clouded apollo is extraordinarily repeat rich (73%). Despite that, the combination of sequencing techniques allowed us to assemble all chromosomes (nc = 29) to a high degree of completeness. The annotation resulted in a relatively high number of protein-coding genes (22,854) compared with other Lepidoptera, of which a large proportion (21,635) could be assigned functions based on homology with other species. A comparative analysis indicates that overall genome structure has been largely conserved, both within the genus and compared with the ancestral lepidopteran karyotype. The high-quality genome assembly and detailed annotation presented here will constitute an important tool for forthcoming efforts aimed at understanding the genetic consequences of fragmentation and decline, as well as for assessments of genetic diversity, population structure, inbreeding, and genetic load in the clouded apollo butterfly.


Asunto(s)
Mariposas Diurnas , Animales , Femenino , Mariposas Diurnas/genética , Conservación de los Recursos Naturales , Genómica , Elementos Transponibles de ADN , Cromosomas , Anotación de Secuencia Molecular
4.
PLoS Genet ; 19(8): e1010717, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37549188

RESUMEN

Reshuffling of genetic variation occurs both by independent assortment of chromosomes and by homologous recombination. Such reshuffling can generate novel allele combinations and break linkage between advantageous and deleterious variants which increases both the potential and the efficacy of natural selection. Here we used high-density linkage maps to characterize global and regional recombination rate variation in two populations of the wood white butterfly (Leptidea sinapis) that differ considerably in their karyotype as a consequence of at least 27 chromosome fissions and fusions. The recombination data were compared to estimates of genetic diversity and measures of selection to assess the relationship between chromosomal rearrangements, crossing over, maintenance of genetic diversity and adaptation. Our data show that the recombination rate is influenced by both chromosome size and number, but that the difference in the number of crossovers between karyotypes is reduced as a consequence of a higher frequency of double crossovers in larger chromosomes. As expected from effects of selection on linked sites, we observed an overall positive association between recombination rate and genetic diversity in both populations. Our results also revealed a significant effect of chromosomal rearrangements on the rate of intergenic diversity change between populations, but limited effects on polymorphisms in coding sequence. We conclude that chromosomal rearrangements can have considerable effects on the recombination landscape and consequently influence both maintenance of genetic diversity and efficiency of selection in natural populations.


Asunto(s)
Aberraciones Cromosómicas , Recombinación Genética , Humanos , Polimorfismo Genético , Cariotipo
5.
Genome Biol Evol ; 15(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37565492

RESUMEN

Coding sequence evolution is influenced by both natural selection and neutral evolutionary forces. In many species, the effects of mutation bias, codon usage, and GC-biased gene conversion (gBGC) on gene sequence evolution have not been detailed. Quantification of how these forces shape substitution patterns is therefore necessary to understand the strength and direction of natural selection. Here, we used comparative genomics to investigate the association between base composition and codon usage bias on gene sequence evolution in butterflies and moths (Lepidoptera), including an in-depth analysis of underlying patterns and processes in one species, Leptidea sinapis. The data revealed significant G/C to A/T substitution bias at third codon position with some variation in the strength among different butterfly lineages. However, the substitution bias was lower than expected from previously estimated mutation rate ratios, partly due to the influence of gBGC. We found that A/T-ending codons were overrepresented in most species, but there was a positive association between the magnitude of codon usage bias and GC-content in third codon positions. In addition, the tRNA-gene population in L. sinapis showed higher GC-content at third codon positions compared to coding sequences in general and less overrepresentation of A/T-ending codons. There was an inverse relationship between synonymous substitutions and codon usage bias indicating selection on synonymous sites. We conclude that the evolutionary rate in Lepidoptera is affected by a complex interaction between underlying G/C -> A/T mutation bias and partly counteracting fixation biases, predominantly conferred by overall purifying selection, gBGC, and selection on codon usage.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/genética , Uso de Codones , Composición de Base , Codón , Conversión Génica , Selección Genética , Evolución Molecular
6.
Genome Res ; 33(5): 810-823, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37308293

RESUMEN

Recombination is a key molecular mechanism that has profound implications on both micro- and macroevolutionary processes. However, the determinants of recombination rate variation in holocentric organisms are poorly understood, in particular in Lepidoptera (moths and butterflies). The wood white butterfly (Leptidea sinapis) shows considerable intraspecific variation in chromosome numbers and is a suitable system for studying regional recombination rate variation and its potential molecular underpinnings. Here, we developed a large whole-genome resequencing data set from a population of wood whites to obtain high-resolution recombination maps using linkage disequilibrium information. The analyses revealed that larger chromosomes had a bimodal recombination landscape, potentially caused by interference between simultaneous chiasmata. The recombination rate was significantly lower in subtelomeric regions, with exceptions associated with segregating chromosome rearrangements, showing that fissions and fusions can have considerable effects on the recombination landscape. There was no association between the inferred recombination rate and base composition, supporting a limited influence of GC-biased gene conversion in butterflies. We found significant but variable associations between the recombination rate and the density of different classes of transposable elements, most notably a significant enrichment of short interspersed nucleotide elements in genomic regions with higher recombination rate. Finally, the analyses unveiled significant enrichment of genes involved in farnesyltranstransferase activity in recombination coldspots, potentially indicating that expression of transferases can inhibit formation of chiasmata during meiotic division. Our results provide novel information about recombination rate variation in holocentric organisms and have particular implications for forthcoming research in population genetics, molecular/genome evolution, and speciation.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/genética , Genoma , Genómica , Genética de Población , Recombinación Genética
7.
Mol Ecol ; 32(13): 3513-3523, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37088782

RESUMEN

Seasonal environmental fluctuations provide formidable challenges for living organisms, especially small ectotherms such as butterflies. A common strategy to cope with harsh environments is to enter diapause, but some species avoid unsuitable conditions by migrating. Despite a growing understanding of migration in the life cycles of some butterfly species, it remains unknown how individuals register and store environmental cues to determine whether and where to migrate. Here, we explored how competition and host plant availability during larval development affect patterns of DNA methylation in the migratory painted lady (Vanessa cardui) butterfly. We identify a set of potentially functional methylome shifts associated with differences in the environment, indicating that DNA methylation is involved in the response to different conditions during larval development. By analysing the transcriptome for the same samples used for methylation profiling, we also uncovered a non-monotonic relationship between gene body methylation and gene expression. Our results provide a starting point for understanding the interplay between DNA methylation and gene expression in butterflies in general and how differences in environmental conditions during development can trigger unique epigenetic marks that might be important for behavioural decisions in the adult stage.


Asunto(s)
Mariposas Diurnas , Diapausa , Humanos , Animales , Mariposas Diurnas/fisiología , Metilación de ADN/genética , Larva/genética , Transcriptoma
8.
Mol Ecol ; 32(3): 560-574, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36336800

RESUMEN

Migration is typically associated with risk and uncertainty at the population level, but little is known about its cost-benefit trade-offs at the species level. Migratory insects in particular often exhibit strong demographic fluctuations due to local bottlenecks and outbreaks. Here, we use genomic data to investigate levels of heterozygosity and long-term population size dynamics in migratory insects, as an alternative to classical local and short-term approaches such as regional field monitoring. We analyse whole-genome sequences from 97 Lepidoptera species and show that individuals of migratory species have significantly higher levels of genome-wide heterozygosity, a proxy for effective population size, than do nonmigratory species. Also, we contribute whole-genome data for one of the most emblematic insect migratory species, the painted lady butterfly (Vanessa cardui), sampled across its worldwide distributional range. This species exhibits one of the highest levels of genomic heterozygosity described in Lepidoptera (2.95 ± 0.15%). Coalescent modelling (PSMC) shows historical demographic stability in V. cardui, and high effective population size estimates of 2-20 million individuals 10,000 years ago. The study reveals that the high risks associated with migration and local environmental fluctuations do not seem to decrease overall genetic diversity and demographic stability in migratory Lepidoptera. We propose a "compensatory" demographic model for migratory r-strategist organisms in which local bottlenecks are counterbalanced by reproductive success elsewhere within their typically large distributional ranges. Our findings highlight that the boundaries of populations are substantially different for sedentary and migratory insects, and that, in the latter, local and even regional field monitoring results may not reflect whole population dynamics. Genomic diversity patterns may elucidate key aspects of an insect's migratory nature and population dynamics at large spatiotemporal scales.


Asunto(s)
Mariposas Diurnas , Humanos , Animales , Mariposas Diurnas/genética , Migración Animal , Insectos , Densidad de Población , Variación Genética/genética
9.
Genomics ; 114(6): 110481, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36115505

RESUMEN

Characterization of gene family expansions and crossing over is crucial for understanding how organisms adapt to the environment. Here, we develop a high-density linkage map and detailed genome annotation of the painted lady butterfly (Vanessa cardui) - a non-diapausing, highly polyphagous species famous for its long-distance migratory behavior and almost cosmopolitan distribution. Our results reveal a complex interplay between regional recombination rate variation, gene duplications and transposable element activity shaping the genome structure of the painted lady. We identify several lineage specific gene family expansions. Their functions are mainly associated with protein and fat metabolism, detoxification, and defense against infection - critical processes for the painted lady's unique life-history. Furthermore, the detailed recombination maps allow us to characterize the regional recombination landscape, data that reveal a strong effect of chromosome size on the recombination rate, a limited impact of GC-biased gene conversion and a positive association between recombination and short interspersed elements.


Asunto(s)
Mariposas Diurnas , Humanos , Animales , Mariposas Diurnas/genética
10.
Wellcome Open Res ; 7: 254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37025368

RESUMEN

We present a genome assembly from an individual male Leptidea sinapis (the wood white; Arthropoda; Insecta; Lepidoptera; Pieridae). The genome sequence is 686 megabases in span. The majority (99.99%) of the assembly is scaffolded into 48 chromosomal pseudomolecules, with three Z sex chromosomes assembled. Gene annotation of this assembly on Ensembl has identified 14,800 protein coding genes.

11.
Genome Biol Evol ; 13(5)2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33760095

RESUMEN

Recombination reshuffles the alleles of a population through crossover and gene conversion. These mechanisms have considerable consequences on the evolution and maintenance of genetic diversity. Crossover, for example, can increase genetic diversity by breaking the linkage between selected and nearby neutral variants. Bias in favor of G or C alleles during gene conversion may instead promote the fixation of one allele over the other, thus decreasing diversity. Mutation bias from G or C to A and T opposes GC-biased gene conversion (gBGC). Less recognized is that these two processes may-when balanced-promote genetic diversity. Here, we investigate how gBGC and mutation bias shape genetic diversity patterns in wood white butterflies (Leptidea sp.). This constitutes the first in-depth investigation of gBGC in butterflies. Using 60 resequenced genomes from six populations of three species, we find substantial variation in the strength of gBGC across lineages. When modeling the balance of gBGC and mutation bias and comparing analytical results with empirical data, we reject gBGC as the main determinant of genetic diversity in these butterfly species. As alternatives, we consider linked selection and GC content. We find evidence that high values of both reduce diversity. We also show that the joint effects of gBGC and mutation bias can give rise to a diversity pattern which resembles the signature of linked selection. Consequently, gBGC should be considered when interpreting the effects of linked selection on levels of genetic diversity.


Asunto(s)
Mariposas Diurnas/genética , Conversión Génica , Variación Genética , Genoma de los Insectos , Animales , Composición de Base , Evolución Molecular , Modelos Genéticos , Mutación , Selección Genética
12.
Mol Ecol ; 30(2): 499-516, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33219534

RESUMEN

In a time with decreasing biodiversity, especially among insects, a detailed understanding about specific resource utilization strategies is crucial. The physiological and behavioural responses to host switches in phytophagous insects are poorly understood. Earlier studies indicate that a host plant switch might be associated with distinctive molecular and physiological responses in different lineages. Expanding the assessment of such associations across Lepidoptera will reveal if there are general patterns in adaptive responses, or if each switch event is more of a unique character. We investigated host plant preference, fitness consequences, effects on expression profiles and gut microbiome composition in two common wood white (Leptidea sinapis) populations with different host plant preferences from the extremes of the species distribution area (Sweden and Catalonia). Our results show that female Catalonian wood whites lack preference for either host plant (Lotus corniculatus or L. dorycnium), while Swedish females laid significantly more eggs on L. corniculatus. Individuals from both populations reared on L. dorycnium had longer developmental times and smaller body size as adults. This indicates that both environmental and genetic factors determine the choice to use a specific host plant. Gene expression analysis revealed a more pronounced response to host plant in the Catalonian compared to the Swedish population. In addition, host plant treatment resulted in a significant shift in microbiome community structure in the Catalonian population. Together, this suggests that population specific plasticity associated with local conditions underlies host plant utilisation in wood whites.


Asunto(s)
Mariposas Diurnas , Microbiota , Animales , Mariposas Diurnas/genética , Dieta , Femenino , Expresión Génica , Humanos , Microbiota/genética , Sinapis , Suecia , Madera
13.
Genome Res ; 30(12): 1727-1739, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33144405

RESUMEN

Changes in interacting cis- and trans-regulatory elements are important candidates for Dobzhansky-Muller hybrid incompatibilities and may contribute to hybrid dysfunction by giving rise to misexpression in hybrids. To gain insight into the molecular mechanisms and determinants of gene expression evolution in natural populations, we analyzed the transcriptome from multiple tissues of two recently diverged Ficedula flycatcher species and their naturally occurring F1 hybrids. Differential gene expression analysis revealed that the extent of differentiation between species and the set of differentially expressed genes varied across tissues. Common to all tissues, a higher proportion of Z-linked genes than autosomal genes showed differential expression, providing evidence for a fast-Z effect. We further found clear signatures of hybrid misexpression in brain, heart, kidney, and liver. However, while testis showed the highest divergence of gene expression among tissues, it showed no clear signature of misexpression in F1 hybrids, even though these hybrids were found to be sterile. It is therefore unlikely that incompatibilities between cis-trans regulatory changes explain the observed sterility. Instead, we found evidence that cis-regulatory changes play a significant role in the evolution of gene expression in testis, which illustrates the tissue-specific nature of cis-regulatory evolution bypassing constraints associated with pleiotropic effects of genes.


Asunto(s)
Proteínas Aviares/genética , Perfilación de la Expresión Génica/métodos , Pájaros Cantores/genética , Testículo/metabolismo , Animales , Encéfalo/metabolismo , Evolución Molecular , Regulación de la Expresión Génica , Riñón/metabolismo , Hígado/metabolismo , Masculino , Miocardio/metabolismo , Especificidad de Órganos , Análisis de Secuencia de ARN , Pájaros Cantores/fisiología , Especificidad de la Especie
14.
Genome Biol Evol ; 11(10): 2875-2886, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31580421

RESUMEN

The relative role of natural selection and genetic drift in evolution is a major topic of debate in evolutionary biology. Most knowledge spring from a small group of organisms and originate from before it was possible to generate genome-wide data on genetic variation. Hence, it is necessary to extend to a larger number of taxonomic groups, descriptive and hypothesis-based research aiming at understanding the proximate and ultimate mechanisms underlying both levels of genetic polymorphism and the efficiency of natural selection. In this study, we used data from 60 whole-genome resequenced individuals of three cryptic butterfly species (Leptidea sp.), together with novel gene annotation information and population recombination data. We characterized the overall prevalence of natural selection and investigated the effects of mutation and linked selection on regional variation in nucleotide diversity. Our analyses showed that genome-wide diversity and rate of adaptive substitutions were comparatively low, whereas nonsynonymous to synonymous polymorphism and substitution levels were comparatively high in Leptidea, suggesting small long-term effective population sizes. Still, negative selection on linked sites (background selection) has resulted in reduced nucleotide diversity in regions with relatively high gene density and low recombination rate. We also found a significant effect of mutation rate variation on levels of polymorphism. Finally, there were considerable population differences in levels of genetic diversity and pervasiveness of selection against slightly deleterious alleles, in line with expectations from differences in estimated effective population sizes.


Asunto(s)
Mariposas Diurnas/genética , Mutación , Selección Genética , Animales , Composición de Base , Variación Genética , Anotación de Secuencia Molecular , Recombinación Genética
15.
Genome Biol Evol ; 11(9): 2633-2652, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31400207

RESUMEN

In species with genetic sex determination, dosage compensation can evolve to equal expression levels of sex-linked and autosomal genes. Current knowledge about dosage compensation has mainly been derived from male-heterogametic (XX/XY) model organisms, whereas less is understood about the process in female-heterogametic systems (ZZ/ZW). In moths and butterflies, downregulation of Z-linked expression in males (ZZ) to match the expression level in females (ZW) is often observed. However, little is known about the underlying regulatory mechanisms, or if dosage compensation patterns vary across ontogenetic stages. In this study, we assessed dynamics of Z-linked and autosomal expression levels across developmental stages in the wood white (Leptidea sinapis). We found that although expression of Z-linked genes in general was reduced compared with autosomal genes, dosage compensation was actually complete for some categories of genes, in particular sex-biased genes, but equalization in females was constrained to a narrower gene set. We also observed a noticeable convergence in Z-linked expression between males and females after correcting for sex-biased genes. Sex-biased expression increased successively across developmental stages, and male-biased genes were enriched on the Z-chromosome. Finally, all five core genes associated with the ribonucleoprotein dosage compensation complex male-specific lethal were detected in adult females, in correspondence with a reduction in the expression difference between autosomes and the single Z-chromosome. We show that tuning of gene dosage is multilayered in Lepidoptera and argue that expression balance across chromosomal classes may predominantly be driven by enrichment of male-biased genes on the Z-chromosome and cooption of available dosage regulators.


Asunto(s)
Mariposas Diurnas/genética , Compensación de Dosificación (Genética) , Animales , Mariposas Diurnas/crecimiento & desarrollo , Femenino , Masculino , Cromosomas Sexuales/genética
16.
Mol Ecol ; 28(16): 3756-3770, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31325366

RESUMEN

Genome scans in recently separated species can inform on molecular mechanisms and evolutionary processes driving divergence. Large-scale polymorphism data from multiple species pairs are also key to investigate the repeatability of divergence-whether radiations tend to show parallel responses to similar selection pressures and/or underlying molecular forces. Here, we used whole-genome resequencing data from six wood white (Leptidea sp.) butterfly populations, representing three closely related species with karyomorph variation, to infer the species' demographic history and characterize patterns of genomic diversity and differentiation. The analyses supported previously established species relationships, and there was no evidence for postdivergence gene flow. We identified significant intraspecific genetic structure, in particular between karyomorph extremes in the wood white (L. sinapis)-a species with a remarkable chromosome number cline across the distribution range. The genomic landscapes of differentiation were erratic, and outlier regions were narrow and dispersed. Highly differentiated (FST ) regions generally had low genetic diversity (θπ ), but increased absolute divergence (DXY ) and excess of rare frequency variants (low Tajima's D). A minority of differentiation peaks were shared across species and population comparisons. However, highly differentiated regions contained genes with overrepresented functions related to metabolism, response to stimulus and cellular processes, indicating recurrent directional selection on a specific set of traits in all comparisons. In contrast to the majority of genome scans in recently diverged lineages, our data suggest that divergence landscapes in Leptidea have been shaped by directional selection and genetic drift rather than stable recombination landscapes and/or introgression.


Asunto(s)
Mariposas Diurnas/genética , Flujo Génico , Especiación Genética , Genética de Población , Animales , Asia , Proteínas Bacterianas , Mariposas Diurnas/clasificación , ADN Mitocondrial/genética , Europa (Continente) , Frecuencia de los Genes , Variación Genética , Genoma , Proteínas Represoras , Selección Genética , Secuenciación Completa del Genoma
17.
Mol Ecol ; 27(4): 935-948, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29411442

RESUMEN

In temperate latitudes, many insects enter diapause (dormancy) during the cold season, a period during which developmental processes come to a standstill. The wood white (Leptidea sinapis) is a butterfly species distributed across western Eurasia that shows photoperiod-induced diapause with variation in critical day-length across populations at different latitudes. We assembled transcriptomes and estimated gene expression levels at different developmental stages in experimentally induced directly developing and diapausing cohorts of a single Swedish population of L. sinapis to investigate the regulatory mechanisms underpinning diapause initiation. Different day lengths resulted in expression changes of developmental genes and affected the rate of accumulation of signal molecules, suggesting that diapause induction might be controlled by increased activity of monoamine neurotransmitters in larvae reared under short-day light conditions. Expression differences between light treatment groups of two monoamine regulator genes (DDC and ST) were observed already in instar III larvae. Once developmental pathways were irreversibly set at instar V, a handful of genes related to dopamine production were differentially expressed leading to a significant decrease in expression of global metabolic genes and increase in expression of genes related to fatty acid synthesis and sequestration. This is in line with a time-dependent (hour-glass) model of diapause regulation where a gradual shift in the concentration of monoamine neurotransmitters and their metabolites during development of larvae under short-day conditions leads to increased storage of fat, decreased energy expenditures, and ultimately developmental stasis at the pupal stage.


Asunto(s)
Mariposas Diurnas/genética , Mariposas Diurnas/fisiología , Diapausa/genética , Perfilación de la Expresión Génica , Madera , Animales , Mariposas Diurnas/efectos de la radiación , Relojes Circadianos/genética , Análisis por Conglomerados , Diapausa/efectos de la radiación , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Ontología de Genes , Luz
18.
Genome Biol Evol ; 9(10): 2491-2505, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28981642

RESUMEN

Characterizing and quantifying genome size variation among organisms and understanding if genome size evolves as a consequence of adaptive or stochastic processes have been long-standing goals in evolutionary biology. Here, we investigate genome size variation and association with transposable elements (TEs) across lepidopteran lineages using a novel genome assembly of the common wood-white (Leptidea sinapis) and population re-sequencing data from both L. sinapis and the closely related L. reali and L. juvernica together with 12 previously available lepidopteran genome assemblies. A phylogenetic analysis confirms established relationships among species, but identifies previously unknown intraspecific structure within Leptidea lineages. The genome assembly of L. sinapis is one of the largest of any lepidopteran taxon so far (643 Mb) and genome size is correlated with abundance of TEs, both in Lepidoptera in general and within Leptidea where L. juvernica from Kazakhstan has considerably larger genome size than any other Leptidea population. Specific TE subclasses have been active in different Lepidoptera lineages with a pronounced expansion of predominantly LINEs, DNA elements, and unclassified TEs in the Leptidea lineage after the split from other Pieridae. The rate of genome expansion in Leptidea in general has been in the range of four Mb/Million year (My), with an increase in a particular L. juvernica population to 72 Mb/My. The considerable differences in accumulation rates of specific TE classes in different lineages indicate that TE activity plays a major role in genome size evolution in butterflies and moths.


Asunto(s)
Mariposas Diurnas/genética , Elementos Transponibles de ADN , Tamaño del Genoma , Genoma de los Insectos , Animales , Mariposas Diurnas/clasificación , Femenino , Mutación , Filogenia
19.
G3 (Bethesda) ; 7(12): 3983-3998, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29054864

RESUMEN

Identification of candidate genes for trait variation in diverging lineages and characterization of mechanistic underpinnings of genome differentiation are key steps toward understanding the processes underlying the formation of new species. Hybrid zones provide a valuable resource for such investigations, since they allow us to study how genomes evolve as species exchange genetic material and to associate particular genetic regions with phenotypic traits of interest. Here, we use whole-genome resequencing of both allopatric and hybridizing populations of the European (Phylloscopus collybita abietinus) and the Siberian chiffchaff (P. tristis)-two recently diverged species which differ in morphology, plumage, song, habitat, and migration-to quantify the regional variation in genome-wide genetic diversity and differentiation, and to identify candidate regions for trait variation. We find that the levels of diversity, differentiation, and divergence are highly heterogeneous, with significantly reduced global differentiation, and more pronounced differentiation peaks in sympatry than in allopatry. This pattern is consistent with regional differences in effective population size and recurrent background selection or selective sweeps reducing the genetic diversity in specific regions prior to lineage divergence, but the data also suggest that postdivergence selection has resulted in increased differentiation and fixed differences in specific regions. We find that hybridization and backcrossing is common in sympatry, and that phenotype is a poor predictor of the genomic composition of sympatric birds. The combination of a differentiation scan approach with identification of fixed differences pinpoint a handful of candidate regions that might be important for trait variation between the two species.


Asunto(s)
Evolución Biológica , Diferenciación Celular/genética , Especiación Genética , Selección Genética/genética , Animales , Flujo Génico , Heterogeneidad Genética , Variación Genética , Genética de Población
20.
Ecol Evol ; 7(7): 2169-2180, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28405281

RESUMEN

Characterizing patterns of evolution of genetic and phenotypic divergence between incipient species is essential to understand how evolution of reproductive isolation proceeds. Hybrid zones are excellent for studying such processes, as they provide opportunities to assess trait variation in individuals with mixed genetic background and to quantify gene flow across different genomic regions. Here, we combine plumage, song, mtDNA and whole-genome sequence data and analyze variation across a sympatric zone between the European and the Siberian chiffchaff (Phylloscopus collybita abietinus/tristis) to study how gene exchange between the lineages affects trait variation. Our results show that chiffchaff within the sympatric region show more extensive trait variation than allopatric birds, with a large proportion of individuals exhibiting intermediate phenotypic characters. The genomic differentiation between the subspecies is lower in sympatry than in allopatry and sympatric birds have a mix of genetic ancestry indicating extensive ongoing and past gene flow. Patterns of phenotypic and genetic variation also vary between regions within the hybrid zone, potentially reflecting differences in population densities, age of secondary contact, or differences in mate recognition or mate preference. The genomic data support the presence of two distinct genetic clades corresponding to allopatric abietinus and tristis and that genetic admixture is the force underlying trait variation in the sympatric region-the previously described subspecies ("fulvescens") from the region is therefore not likely a distinct taxon. In addition, we conclude that subspecies identification based on appearance is uncertain as an individual with an apparently distinct phenotype can have a considerable proportion of the genome composed of mixed alleles, or even a major part of the genome introgressed from the other subspecies. Our results provide insights into the dynamics of admixture across subspecies boundaries and have implications for understanding speciation processes and for the identification of specific chiffchaff individuals based on phenotypic characters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...