Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Cell Rep ; 42(11): 113350, 2023 11 28.
Article En | MEDLINE | ID: mdl-37897726

Although high-fat diet (HFD)-induced gut microbiota dysbiosis is known to affect atherosclerosis, the underlying mechanisms remain to be fully explored. Here, we show that the progression of atherosclerosis depends on a gut microbiota shaped by an HFD but not a high-cholesterol (HC) diet and, more particularly, on low fiber (LF) intake. Mechanistically, gut lymphoid cells impacted by HFD- or LF-induced microbiota dysbiosis highly proliferate in mesenteric lymph nodes (MLNs) and migrate from MLNs to the periphery, which fuels T cell accumulation within atherosclerotic plaques. This is associated with the induction of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) within plaques and the presence of enterotropic lymphocytes expressing ß7 integrin. MLN resection or lymphocyte deficiency abrogates the pro-atherogenic effects of a microbiota shaped by LF. Our study shows a pathological link between a diet-shaped microbiota, gut immune cells, and atherosclerosis, suggesting that a diet-modulated microbiome might be a suitable therapeutic target to prevent atherosclerosis.


Atherosclerosis , Microbiota , Plaque, Atherosclerotic , Humans , Animals , Mice , Dysbiosis/chemically induced , Lymphocytes , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
2.
STAR Protoc ; 4(3): 102388, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37379221

In vitro modeling of the different steps of immune cell recruitment is essential to decipher the role of endothelial cells in this process. Here, we present a protocol for the assessment of human monocyte transendothelial migration using a live cell imaging system. We describe steps for culture of fluorescent monocytic THP-1 cells and chemotaxis plate preparation with HUVEC monolayers. We then detail real-time analysis using the IncuCyte® S3 live-cell imaging system, image analysis, and assessment of transendothelial migration rates. For complete details on the use and execution of this protocol, please refer to Ladaigue et al.1.


Monocytes , Transendothelial and Transepithelial Migration , Humans , Cell Movement , Endothelial Cells , Chemotaxis
3.
iScience ; 25(12): 105482, 2022 Dec 22.
Article En | MEDLINE | ID: mdl-36404925

Radiation therapy damages tumors and normal tissues, probably in part through the recruitment of immune cells. Endothelial high-mannose N-glycans are, in particular, involved in monocyte-endothelium interactions. Trimmed by the class I α-mannosidases, these structures are quite rare in normal conditions. Here, we show that the expression of the endothelial α-mannosidase MAN1C1 protein decreases after irradiation. We modeled two crucial steps in monocyte recruitment by developing in vitro real-time imaging models. Inhibition of MAN1C1 expression by siRNA gene silencing increases the abundance of high-mannose N-glycans, improves the adhesion of monocytes on endothelial cells in flow conditions and, in contrast, decreases radiation-induced transendothelial migration of monocytes. Consistently, overexpression of MAN1C1 in endothelial cells using lentiviral vectors decreases the abundance of high-mannose N-glycans and monocyte adhesion and enhances transendothelial migration of monocytes. Hence, we propose a role for endothelial MAN1C1 in the recruitment of monocytes, particularly in the adhesion step to the endothelium.

...