Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 199
1.
Anal Chim Acta ; 1306: 342621, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38692790

BACKGROUND: In vivo solid-phase microextraction (SPME) is a minimally invasive, non-exhaustive sample-preparation technique that facilitates the direct isolation of low molecular weight compounds from biological matrices in living systems. This technique is especially useful for the analysis of phytocannabinoids (PCs) in plant material, both for forensic purposes and for monitoring the PC content in growing Cannabis spp. plants. In contrast to traditional extraction techniques, in vivo SPME enables continuous tracking of the changes in the level of PCs during plant growth without the need for plant material collection. In this study, in vivo SPME utilizing biocompatible C18 probes and liquid-chromatography coupled to quadrupole time-of flight mass spectrometry (LC-Q-TOF-MS) is proposed as a novel strategy for the extraction and analysis of the acidic forms of five PCs in growing medicinal cannabis plants. RESULTS: The SPME method was optimized by testing various parameters, including the extraction phase (coating), extraction and desorption times, and the extraction temperature. The proposed method was validated with satisfactory analytical performance regarding linearity (10-3000 ng/mL), limits of quantification, and precision (relative standard deviations below 5.5 %). The proposed method was then successfully applied for the isolation of five acidic forms of PCs, which are main components of growing medicinal cannabis plants. As a proof-of-concept, SPME probes were statically inserted into the inflorescences of two varieties of Cannabis spp. plants (i.e., CBD-dominant and Δ9-THC-dominant) cultivated under controlled conditions for 30 min extraction of tetrahydrocannabinolic acid (Δ9-THCA), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), cannabiviarinic acid (CBVA), and tetrahydrocannabivarinic acid (THCVA). SIGNIFICANCE AND NOVELTY: The results confirmed that the developed SPME-LC-Q-TOF-MS method is a precise and efficient tool that enables direct and rapid isolation and analysis of PCs under in vivo conditions. The proposed methodology is highly appealing option for monitoring the metabolic pathways and compositions of multiple PCs in medicinal cannabis at different stages of plant growth.


Cannabinoids , Cannabis , Liquid Chromatography-Mass Spectrometry , Solid Phase Microextraction , Cannabinoids/analysis , Cannabis/chemistry , Liquid Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods
2.
Int J Nanomedicine ; 19: 3973-3989, 2024.
Article En | MEDLINE | ID: mdl-38711615

Graphene and graphene-based materials have attracted growing interest for potential applications in medicine because of their good biocompatibility, cargo capability and possible surface functionalizations. In parallel, prototypic graphene-based devices have been developed to diagnose, imaging and track tumor growth in cancer patients. There is a growing number of reports on the use of graphene and its functionalized derivatives in the design of innovative drugs delivery systems, photothermal and photodynamic cancer therapy, and as a platform to combine multiple therapies. The aim of this review is to introduce the latest scientific achievements in the field of innovative composite graphene materials as potentially applied in cancer therapy. The "Technology and Innovation Roadmap" published in the Graphene Flagship indicates, that the first anti-cancer drugs using graphene and graphene-derived materials will have appeared on the market by 2030. However, it is necessary to broaden understanding of graphene-based material interactions with cellular metabolism and signaling at the functional level, as well as toxicity. The main aspects of further research should elucidate how treatment methods (e.g., photothermal therapy, photodynamic therapy, combination therapy) and the physicochemical properties of graphene materials influence their ability to modulate autophagy and kill cancer cells. Interestingly, recent scientific reports also prove that graphene nanocomposites modulate cancer cell death by inducing precise autophagy dysfunctions caused by lysosome damage. It turns out as well that developing photothermal oncological treatments, it should be taken into account that near-infrared-II radiation (1000-1500 nm) is a better option than NIR-I (750-1000 nm) because it can penetrate deeper into tissues due to less scattering at longer wavelengths radiation.


Antineoplastic Agents , Graphite , Neoplasms , Graphite/chemistry , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Drug Delivery Systems/methods , Photochemotherapy/methods , Autophagy/drug effects , Animals , Nanocomposites/chemistry , Nanocomposites/therapeutic use , Nanomedicine
3.
Anal Bioanal Chem ; 416(12): 2951-2968, 2024 May.
Article En | MEDLINE | ID: mdl-38507043

Quantitative structure-retention relationship (QSRR) modeling has emerged as an efficient alternative to predict analyte retention times using molecular descriptors. However, most reported QSRR models are column-specific, requiring separate models for each high-performance liquid chromatography (HPLC) system. This study evaluates the potential of machine learning (ML) algorithms and quantum mechanical (QM) descriptors to develop QSRR models that can predict retention times across three different reversed-phase HPLC columns under varying conditions. Four machine learning methods-partial least squares (PLS) regression, ridge regression (RR), random forest (RF), and gradient boosting (GB)-were compared on a dataset of 360 retention times for 15 aromatic analytes. Molecular descriptors were calculated using density functional theory (DFT). Column characteristics like particle size and pore size and experimental conditions like temperature and gradient time were additionally used as descriptors. Results showed that the GB-QSRR model demonstrated the best predictive performance, with Q2 of 0.989 and root mean square error of prediction (RMSEP) of 0.749 min on the test set. Feature analysis revealed that solvation energy (SE), HOMO-LUMO energy gap (∆E HOMO-LUMO), total dipole moment (Mtot), and global hardness (η) are among the most influential predictors for retention time prediction, indicating the significance of electrostatic interactions and hydrophobicity. Our findings underscore the efficiency of ensemble methods, GB and RF models employing non-linear learners, in capturing local variations in retention times across diverse experimental setups. This study emphasizes the potential of cross-column QSRR modeling and highlights the utility of ML models in optimizing chromatographic analysis.

4.
J Chromatogr A ; 1717: 464671, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38278133

In recent years, there has been an increasing worldwide interest in the use of alternative sample preparation methods. Digital light processing (DLP) is a 3D printing technique based on using UV light to form photo-curable resin layer upon layer, which results in a printed shape. This study explores the application of this technique for the development of novel drug extraction devices in analytical chemistry. A composite material consisting of a photocurable resin and C18-modified silica particles was employed as a sorbent device, demonstrating its effectiveness in pharmaceutical analysis. Apart from estimating optimal printing parameters, microscopic examination of the material surface, and sorbent powder to resin ratio, the extraction procedure was also optimised. Optimisation included the type and amount of sample matrix additives, desorption solvent, sorption and desorption times, and proper number of sorbent devices needed in extraction protocol. To demonstrate this method's applicability for sample analysis, the solid-phase extraction followed by gas chromatography coupled with mass spectrometry (SPE-GC-MS) method was validated for its ability to quantify benzodiazepine-type drugs. This evaluation confirmed good linearity in the concentration range of 50-1000 ng/mL, with R2 values being 0.9932 and 0.9952 for medazepam and diazepam, respectively. Validation parameters proved that the presented method is precise (with values ranging in-between 2.98 %-7.40 %), and accurate (88.81 % to 110.80 %). A negative control was also performed to investigate possible sorption properties of the resin itself, proving that the addition of C18-modified silica particles significantly increases the extraction efficiency and repeatability. The cost-effectiveness of this approach makes it particularly advantageous for single-use scenarios, eliminating the need for time-consuming sorbent-cleaning procedures, common in traditional solid-phase extraction techniques. Future optimisation opportunities include refining sorbent size, shape, and geometry to achieve lower limits of quantification. As a result of these findings, 3D-printed extraction devices can serve as a viable alternative to commercially available SPE or solid-phase microextraction (SPME) protocols for studying new sample preparation approaches.


Silicon Dioxide , Solid Phase Microextraction , Gas Chromatography-Mass Spectrometry , Silicon Dioxide/chemistry , Solid Phase Microextraction/methods , Solid Phase Extraction , Acrylates , Printing, Three-Dimensional
5.
Mol Neurobiol ; 61(1): 148-166, 2024 Jan.
Article En | MEDLINE | ID: mdl-37589832

Estrogens function in numerous physiological processes including controlling brain cell growth and differentiation. 2-Methoxestradiol (2-ME2), a 17ß-estradiol (E2) metabolite, is known for its anticancer effects as observed both in vivo and in vitro. 2-ME2 affects all actively dividing cells, including neurons. The study aimed to determine whether 2-ME2 is a potentially cancer-protective or rather neurodegenerative agent in a specific tissue culture model as well as a clinical setup. In this study, 2-ME2 activity was determined in a Parkinson's disease (PD) in vitro model based on the neuroblastoma SH-SY5Y cell line. The obtained results suggest that 2-ME2 generates nitro-oxidative stress and controls heat shock proteins (HSP), resulting in DNA strand breakage and apoptosis. On the one hand, it may affect intensely dividing cells preventing cancer development; however, on the other hand, this kind of activity within the central nervous system may promote neurodegenerative diseases like PD. Thus, the translational value of 2-ME2's neurotoxic activity in a PD in vitro model was also investigated. LC-MS/MS technique was used to evaluate estrogens and their derivatives, namely, hydroxy and methoxyestrogens, in PD patients' blood, whereas the stopped-flow method was used to assess hydrogen peroxide (H2O2) levels. Methoxyestrogens and H2O2 levels were increased in patients' blood as compared to control subjects, but hydoxyestrogens were simultaneously decreased. From the above, we suggest that the determination of plasma levels of methoxyestrogens and H2O2 may be a novel PD biomarker. The presented research is the subject of the pending patent application "The use of hydrogen peroxide and 17ß-estradiol and its metabolites as biomarkers in the diagnosis of neurodegenerative diseases," no. P.441360.


Neuroblastoma , Parkinson Disease , Humans , 2-Methoxyestradiol , Hydrogen Peroxide , Parkinson Disease/metabolism , Reactive Oxygen Species/metabolism , Chromatography, Liquid , Neuroblastoma/metabolism , Tandem Mass Spectrometry , Oxidative Stress , Estradiol , Apoptosis , Estrogens , Cell Line, Tumor
6.
Talanta ; 270: 125613, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38159351

Solid-phase microextraction (SPME) has gained attention as a simple, fast, and non-exhaustive extraction technique, as its unique features enable its use for the extraction of many classes of drugs from biological matrices. This sample-preparation approach consolidates sampling and sample preparation into a single step, in addition to providing analyte preconcentration and sample clean-up. These features have helped SPME become an integral part of several analytical protocols for monitoring drug concentrations in human matrices in clinical, toxicological, and forensic medicine studies. Over the years, researchers have continued to develop the SPME technique, resulting in the introduction of novel sorbents and geometries, which have resulted in improved extraction efficiencies. This review summarizes developments and applications of SPME published between 2016 and 2022, specifically in relation to the analysis of central nervous system drugs, drugs used to treat cardiovascular disorders and bacterial infections, and drugs used in immunosuppressive and anticancer therapies.


Forensic Medicine , Solid Phase Microextraction , Humans , Solid Phase Microextraction/methods , Specimen Handling
7.
J Pharm Anal ; 13(10): 1117-1134, 2023 Oct.
Article En | MEDLINE | ID: mdl-38024858

The endocannabinoid system (ECS), particularly its signaling pathways and ligands, has garnered considerable interest in recent years. Along with clinical work investigating the ECS' functions, including its role in the development of neurological and inflammatory conditions, much research has focused on developing analytical protocols enabling the precise monitoring of the levels and metabolism of the most potent ECS ligands: exogenous phytocannabinoids (PCs) and endogenous cannabinoids (endocannabinoids, ECs). Solid-phase microextraction (SPME) is an advanced, non-exhaustive sample-preparation technique that facilitates the precise and efficient isolation of trace amounts of analytes, thus making it appealing for the analysis of PCs and ECs in complex matrices of plant and animal/human origin. In this paper, we review recent forensic medicine and toxicological studies wherein SPME has been applied to monitor levels of PCs and ECs in complex matrices, determine their effects on organism physiology, and assess their role in the development of several diseases.

8.
Anal Chem ; 95(31): 11632-11640, 2023 Aug 08.
Article En | MEDLINE | ID: mdl-37490645

We report on the first successful attempt to produce a silica/polymer composite with retained C18 silica sorptive properties that can be reliably printed using three-dimensional (3D) FDM printing. A 3D printer provides an exceptional tool for producing complex objects in an easy and inexpensive manner and satisfying the current custom demand of research. Fused deposition modeling (FDM) is the most popular 3D-printing technique based on the extrusion of a thermoplastic material. The lack of appropriate materials limits the development of advanced applications involving directly 3D-printed devices with intrinsic chemical activity. Progress in sample preparation, especially for complex sample matrices and when mass spectrometry is favorable, remains a vital research field. Silica particles, for example, which are commonly used for extraction, cannot be directly extruded and are not readily workable in a powder form. The availability of composite materials containing a thermoplastic polymer matrix and dispersed silica particles would accelerate research in this area. This paper describes how to prepare a polypropylene (PP)/acrylonitrile-butadiene-styrene (ABS)/C18-functionalized silica composite that can be processed by FDM 3D printing. We present a method for producing the filament as well as a procedure to remove ABS by acetone rinsing (to activate the material). The result is an activated 3D-printed object with a porous structure that allows access to silica particles while maintaining macroscopic size and shape. The 3D-printed device is intended for use in a solid-phase microextraction (SPME) procedure. The proposed composite's effectiveness is demonstrated for the microextraction of glimepiride, imipramine, and carbamazepine. The complex honeycomb geometry of the sorbent has shown to be superior to the simple tubular sorbent, which proves the benefits of 3D printing. The 3D-printed sorbent's shape and microextraction parameters were fine-tuned to provide satisfactory recoveries (33-47%) and high precision (2-6%), especially for carbamazepine microextraction.

9.
Int J Mol Sci ; 24(11)2023 Jun 05.
Article En | MEDLINE | ID: mdl-37298719

A series of novel 2-alkythio-4-chloro-N-[imino-(heteroaryl)methyl]benzenesulfonamide derivatives, 8-24, were synthesized in the reaction of the N-(benzenesulfonyl)cyanamide potassium salts 1-7 with the appropriate mercaptoheterocycles. All the synthesized compounds were evaluated for their anticancer activity in HeLa, HCT-116 and MCF-7 cell lines. The most promising compounds, 11-13, molecular hybrids containing benzenesulfonamide and imidazole moieties, selectively showed a high cytotoxic effect in HeLa cancer cells (IC50: 6-7 µM) and exhibited about three times less cytotoxicity against the non-tumor cell line HaCaT cells (IC50: 18-20 µM). It was found that the anti-proliferative effects of 11, 12 and 13 were associated with their ability to induce apoptosis in HeLa cells. The compounds increased the early apoptotic population of cells, elevated the percentage of cells in the sub-G1 phase of the cell cycle and induced apoptosis through caspase activation in HeLa cells. For the most active compounds, susceptibility to undergo first-phase oxidation reactions in human liver microsomes was assessed. The results of the in vitro metabolic stability experiments indicated values of the factor t½ for 11-13 in the range of 9.1-20.3 min and suggested the hypothetical oxidation of these compounds to sulfenic and subsequently sulfinic acids as metabolites.


Antineoplastic Agents , Humans , Molecular Structure , Structure-Activity Relationship , HeLa Cells , Cell Proliferation , Drug Screening Assays, Antitumor , Antineoplastic Agents/chemistry , Cell Line, Tumor , Apoptosis , Dose-Response Relationship, Drug , Benzenesulfonamides
10.
Pharmaceutics ; 15(4)2023 Apr 12.
Article En | MEDLINE | ID: mdl-37111712

Due to epirubicin's (EPI) narrow therapeutic index and risk of cardiotoxicity, it is critical to monitor concentrations of this drug when being used to treat cancer patients. In this study, a simple and fast magnetic solid-phase microextraction (MSPME) protocol for the determination of EPI in plasma and urine samples is developed and tested. Experiments were performed using prepared Fe3O4-based nanoparticles coated with silica and a double-chain surfactant-namely, didodecyldimethylammonium bromide (DDAB)-as a magnetic sorbent. All the prepared samples were analyzed via liquid chromatography coupled with fluorescence detection (LC-FL). The validation parameters indicated good linearity in the range of 0.001-1 µg/mL with a correlation coefficient > 0.9996 for plasma samples, and in the range of 0.001-10 µg/mL with a correlation coefficient > 0.9997 for urine samples. The limit of detection (LOD) and limit of quantification (LOQ) for both matrices were estimated at 0.0005 µg/mL and 0.001 µg/mL, respectively. The analyte recovery after sample pretreatment was 80 ± 5% for the plasma samples and 90 ± 3% for the urine samples. The developed method's applicability for monitoring EPI concentrations was evaluated by employing it to analyze real plasma and urine samples collected from a pediatric cancer patient. The obtained results confirmed the proposed MSPME-based method's usefulness, and enabled the determination of the EPI concentration-time profile in the studied patient. The miniaturization of the sampling procedure, along with the significant reduction in pre-treatment steps, make the proposed protocol a promising alternative to routine approaches to monitoring EPI levels in clinical laboratories.

11.
Pharmaceutics ; 15(4)2023 Apr 17.
Article En | MEDLINE | ID: mdl-37111740

In recent years, therapeutic drug monitoring (TDM) has been applied in docetaxel (DOC)-based anticancer therapy to precisely control various pharmacokinetic parameters, including the concentration of DOC in biofluids (e.g., plasma or urine), its clearance, and its area under the curve (AUC). The ability to determine these values and to monitor DOC levels in biological samples depends on the availability of precise and accurate analytical methods that both enable fast and sensitive analysis and can be implemented in routine clinical practice. This paper presents a new method for isolating DOC from plasma and urine samples based on the coupling of microextraction and advanced liquid chromatography with tandem mass spectrometry (LC-MS/MS). In the proposed method, biological samples are prepared via ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) using ethanol (EtOH) and chloroform (Chl) as the desorption and extraction solvents, respectively. The proposed protocol was fully validated according to the Food and Drug Administration (FDA) and the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) requirements. The developed method was then applied to monitor the DOC profile in plasma and urine samples collected from a pediatric patient suffering from cardiac angiosarcoma (AS) with metastasis to lungs and mediastinal lymph nodes, who was receiving treatment with DOC at a dose of 30 mg/m2 body surface area. Due to the rarity of this disease, TDM was carried out to determine the exact levels of DOC at particular time points to ascertain which levels were conducive to maximizing the treatment's effectiveness while minimizing the drug's toxicity. To this end, the concentration-time profiles of DOC in the plasma and urine samples were determined, and the levels of DOC at specific time intervals up to 3 days after administration were measured. The results showed that DOC was present at higher concentrations in the plasma than in the urine samples, which is due to the fact that this drug is primarily metabolized in the liver and then eliminated with the bile. The obtained data provided information about the pharmacokinetic profile of DOC in pediatric patients with cardiac AS, which enabled the dose to be adjusted to achieve the optimal therapeutic regimen. The findings of this work demonstrate that the optimized method can be applied for the routine monitoring of DOC levels in plasma and urine samples as a part of pharmacotherapy in oncological patients.

12.
J Chromatogr A ; 1698: 463981, 2023 Jun 07.
Article En | MEDLINE | ID: mdl-37098291

In this paper we demonstrate the development of the extraction procedure of polycyclic aromatic hydrocarbons from baby diapers along with their quantification by gas chromatography-mass spectrometry. Apart from covering plastic foil, disposable baby diapers contain sorbents intended to absorb urine and feces. A hygroscopic, adsorptive, and tough-to-homogenize fibrous sorbent, represents an analytical challenge to analytical chemists. To address this issue we optimized and validated a novel extraction protocol including cryogenic homogenization, liquid-liquid extraction and further preconcentration by evaporation. By using deuterated internal standards in conjunction with matrix-matched calibration, high precision and accuracy were achieved. The limit of detection is estimated in the range of 0.041-0.221 ng/g (for fluorene and fluoranthene, respectively), which is far below the concentration currently assumed to be dangerous for children. The method was successfully applied to real samples available on the Polish market, and it was found that the amount of PAH compounds varies between manufacturers. Most diapers do not have all 15 polycyclic aromatic hydrocarbons in their composition, but there is no diaper that is free of these compounds. The most abundant in diapers was acenaphthalene, where the concentration ranged from 1.6 ng/g diaper up to 362.4 ng/g. The lowest concentration in diapers is chrysene, which is not detected in most diapers. The article is a response to the lack of a harmonized analytical method for the determination of polycyclic aromatic hydrocarbons in disposable sanitary products for children.


Polycyclic Aromatic Hydrocarbons , Child , Humans , Gas Chromatography-Mass Spectrometry/methods , Polycyclic Aromatic Hydrocarbons/analysis , Liquid-Liquid Extraction , Adsorption , Calibration , Limit of Detection
13.
Metabolomics ; 19(4): 40, 2023 04 12.
Article En | MEDLINE | ID: mdl-37043024

INTRODUCTION: The endocannabinoid system consists of different types of receptors, enzymes and endocannabinoids (ECs), which are involved in several physiological processes, but also play important role in the development and progression of central nervous system disorders. OBJECTIVES: The purpose of this study was to apply precise and sensitive methodology for monitoring of four ECs, namely anandamide (AEA), 2-arachidonoyl glycerol (2-AG), N-arachidonoyl dopamine (NADA), 2-arachidonyl glyceryl ether (2-AGe) in selected brain regions of female and male rats at different stages of development (young, adult and old). METHODS: Biocompatible solid-phase microextraction (SPME) probes were introduced into the intact (non-homogenized) brain structures for isolation of four ECs, and the extracts were subjected to LC-MS/MS analysis. Two chemometric approaches, namely hierarchical cluster analysis (HCA) and Principal Component Analysis (PCA) were applied to provide more information about the levels of 2-AG and AEA in different brain structures. RESULTS: 2-AG and AEA were extracted and could be quantified in each brain region; the level of 2-AG was significantly higher in comparison to the level of AEA. Two highly unstable ECs, NADA and 2-AGe, were captured by SPME probes from intact brain samples for the first time. CONCLUSION: SPME probes were able to isolate highly unstable endogenous compounds from intact tissue, and provided new tools for precise analysis of the level and distribution of ECs in different brain regions. Monitoring of ECs in brain samples is important not only in physiological conditions, but also may contribute to better understanding of the functioning of the endocannabinoid system in various disorders.


Endocannabinoids , Solid Phase Microextraction , Male , Rats , Female , Animals , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Metabolomics , Brain
14.
Open Med (Wars) ; 18(1): 20230652, 2023.
Article En | MEDLINE | ID: mdl-36874365

In recent years, off-label use of sirolimus (SIR) has been gaining attention in the clinical practice. However, since it is critical to achieve and maintain therapeutic blood levels of SIR during treatment, the regular monitoring of this drug in individual patients must be implemented, especially in off-label indications of this drug. In this article, a fast, simple, and reliable analytical method for determining SIR levels in whole blood samples is proposed. Sample preparation based on dispersive liquid-liquid microextraction (DLLME) followed by liquid chromatography-mass spectrometry (LC-MS/MS) was fully optimized toward the analysis of SIR and proposed as a fast, simple, and reliable analytical method for determining the pharmacokinetic profile of SIR in whole-blood samples. In addition, the practical applicability of the proposed DLLME-LC-MS/MS method was evaluated by analyzing the pharmacokinetic profile of SIR in whole blood samples obtained from two pediatric patients suffering from lymphatic anomalies, receiving this drug as off-label clinical indication. The proposed methodology can be successfully applied in routine clinical practice for the fast and precise assessment of SIR levels in biological samples, thus allowing SIR dosages to be adjusted in real time during pharmacotherapy. Moreover, the measured SIR levels in the patients indicate the need for monitoring between doses to ensure the optimal pharmacotherapy of patients.

15.
Anal Chem ; 94(48): 16587-16595, 2022 12 06.
Article En | MEDLINE | ID: mdl-36413572

Ionic liquids (ILs), also known as "designer solvents," comprise a large group of compounds that can improve overall sample preparation performance due to their unique physical and chemical properties. Some of them have a comparable structure to surfactants, which can be also considered as effective extraction solvents. In this study, nine different ILs and a double-chained surfactant were investigated as potential coating materials for iron oxide-based nanoparticles (NPs) used in the pretreatment of human plasma samples. Various methods of synthesizing and functionalizing NPs were employed in fabricating the magnetic sorbents, with the physicochemical properties of the resultant extraction phases (i.e., naked NPs, NPs coated with silica, and NPs coated with silica and selected IL or surfactant) being characterized via X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TG), and transmission electron microscopy (TEM). The effectiveness of the developed NP-based extraction phases was tested by applying them for the extraction of epirubicin hydrochloride (EPI) from plasma samples, followed by analysis via liquid chromatography with fluorescence detection (LC-FL). The results showed that NPs coated with both silica and IL or silica and surfactant provided significantly higher extraction efficiency compared to naked NPs and NPs coated solely with silica. Additionally, the findings also revealed that the adsorption of analytes depends not only on the coating procedure but also on the type of coating material used to functionalize the NPs. Among the tested structures, didodecyldimethylammonium bromide provided the best performance for the functionalization of NP sorbents previously coated with silica.


Ionic Liquids , Magnetite Nanoparticles , Humans , Ionic Liquids/chemistry , Surface-Active Agents/chemistry , Magnetite Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , Silicon Dioxide/chemistry , Solid Phase Extraction/methods
16.
Article En | MEDLINE | ID: mdl-36231806

The potential role of testosterone and dihydrotestosterone in the pathogenesis of depression in older subjects is poorly recognized and understood. The current study examines the symptoms of depression in males and females at the age of 60-65 using a short version (15 questions) of the Geriatric Depression Scale (GDS) questionnaire. Blood plasma levels of androgens were estimated by LC/MS/MS. Total GDS score calculated for males were not found to be significantly associated with plasma levels of testosterone or dihydrotestosterone. Older men with higher plasma testosteronemia were more likely to report being in good spirits most of the time, but more willing to stay at home than undertake outside activities. The men with higher plasma levels of dihydrotestosterone also perceived themselves as being in good spirits most of the time. Older men with higher testosterone were more likely to report having more problems with their memory than others. No significant associations were found between plasma levels of androgens and GDS scores in older women; however, some tendencies suggest that testosterone and dihydrotestosterone may act as antidepressants in older women.


Dihydrotestosterone , Testosterone , Aged , Androgens , Depression , Female , Humans , Male , Tandem Mass Spectrometry
17.
J Chromatogr A ; 1677: 463339, 2022 Aug 16.
Article En | MEDLINE | ID: mdl-35870278

In this paper, an oil-in-water (O/W) nanoemulsion (NE) prepared by water cold dilution of an O/W microemulsion (ME) was introduced as a sample matrix in microemulsion electrokinetic capillary chromatography (MEEKC) for the highly hydrophobic compounds analysis. Several model compounds with log PO/W values in the 4.1-10.9 range, from different chemical groups, including retinol, α-tocopherol, cholecalciferol, phylloquinone, menaquinone-7, dichlorodiphenyltrichloroethane, ivermectin have been tested. As a proof of the concept of NE formation, a dynamic light scattering technique was employed to determine the size distribution profile of NE particles. Moreover, due to relatively low conductivity of the NE matrix (50-100 times lower in comparison to the separation buffer) and a negative electric charge provided to hydrophobic compounds through NE dispersed phase, NE matrices have been combined with preconcentration techniques based on electrokinetic dosing, namely field amplified sample injection (FASI) and pressure assisted electrokinetic injection (PAEKI). The detection limits for vitamin K1 and K2-MK7 in the NE matrix in combination with FASI (NE-MEEKC-FASI) as well as PAEKI (NE-MEEKC-PAEKI) were up to 42.9 and 12.1 ng mL-1, respectively. In comparison to standard hydrodynamic injection for microemulsion sample matrix NE-MEEKC-PAEKI grant 45-fold improvement in signal sensitivity. The study presents an innovative approach, as it enables the use of preconcentration techniques for highly hydrophobic compounds (log PO/W > 4), which was not previously possible for implementation in the electromigration techniques. Likewise, the use of organic solvents has been reduced by using ME as a solvent for stock solutions and diluting with water prior to the analysis. The application to real samples was investigated using a dietary supplement containing vitamin K2-MK7 obtained from the fermentation product of soybeans.


Chromatography, Micellar Electrokinetic Capillary , Chromatography, Micellar Electrokinetic Capillary/methods , Emulsions/chemistry , Hydrophobic and Hydrophilic Interactions , Solvents , Vitamin K , Water/chemistry
18.
Redox Biol ; 55: 102395, 2022 Sep.
Article En | MEDLINE | ID: mdl-35841627

Lung cancer is one of the most common cancers worldwide, causing nearly one million deaths each year. Herein, we present the effect of 2-methoxyestradiol (2-ME), the endogenous metabolite of 17ß-estradiol (E2), on non-small cell lung cancer (NSCLC) cells. We observed that 2-ME reduced the viability of lung adenocarcinoma in two-dimensional (2D) and three-dimensional (3D) spheroidal A549 cell culture models. Molecular modeling was carried out aiming to visualize amino acid residues within binding pockets of the acyl-protein thioesterases, namely 1 (APT1) and 2 (APT2), and thus to identify which ones were more likely involved in the interaction with 2-ME. Our findings suggest that 2-ME acts as an APT1 inhibitor enhancing protein palmitoylation and oxidative stress phenomena in the lung cancer cell. In order to support our data, metabolomics of blood serum from NSCLC patients was also performed. Moreover, computational analysis suggests that 2-ME as compared to other estrogen metabolism intermediates is relatively safe in terms of its possible non-receptor bioactivity within healthy human cells due to a very low electrophilic potential and hence no substantial risk of spontaneous covalent modification of biologically protective nucleophiles. We propose that 2-ME can be used as a selective tumor biomarker in the course of certain types of lung cancers and possibly as a therapeutic adjuvant or neoadjuvant.

19.
Int J Mol Sci ; 23(9)2022 Apr 26.
Article En | MEDLINE | ID: mdl-35563141

Acute lymphoblastic leukemia (ALL) is the most common hematological malignancy affecting pediatric patients. ALL treatment regimens with cytostatics manifest substantial toxicity and have reached the maximum of well-tolerated doses. One potential approach for improving treatment efficiency could be supplementation of the current regimen with naturally occurring phytochemicals with anti-cancer properties. Nutraceuticals such as quercetin, curcumin, resveratrol, and genistein have been studied in anti-cancer therapy, but their application is limited by their low bioavailability. However, their cooperative activity could potentially increase their efficiency at low, bioavailable doses. We studied their cooperative effect on the viability of a human ALL MOLT-4 cell line in vitro at the concentration considered to be in the bioavailable range in vivo. To analyze their potential side effect on the viability of non-tumor cells, we evaluated their toxicity on a normal human foreskin fibroblast cell line (BJ). In both cell lines, we also measured specific indicators of cell death, changes in cell membrane permeability (CMP), and mitochondrial membrane potential (MMP). Even at a low bioavailable concentration, genistein and curcumin decreased MOLT-4 viability, and their combination had a significant interactive effect. While resveratrol and quercetin did not affect MOLT-4 viability, together they enhanced the effect of the genistein/curcumin mix, significantly inhibiting MOLT-4 population growth in vitro. Moreover, the analyzed phytochemicals and their combinations did not affect the BJ cell line. In both cell lines, they induced a decrease in MMP and correlating CMP changes, but in non-tumor cells, both metabolic activity and cell membrane continuity were restored in time. (4) Conclusions: The results indicate that the interactive activity of analyzed phytochemicals can induce an anti-cancer effect on ALL cells without a significant effect on non-tumor cells. It implies that the application of the combinations of phytochemicals an anti-cancer treatment supplement could be worth further investigation regardless of their low bioavailability.


Curcumin , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Apoptosis , Cell Line , Cell Line, Tumor , Curcumin/pharmacology , Curcumin/therapeutic use , Genistein/pharmacology , Genistein/therapeutic use , Humans , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Quercetin/pharmacology , Quercetin/therapeutic use , Resveratrol/pharmacology , Resveratrol/therapeutic use
20.
Gynecol Endocrinol ; 38(1): 28-32, 2022 Jan.
Article En | MEDLINE | ID: mdl-34044669

OBJECTIVE: The main aim of this prospective study was to investigate the relationship between intrafollicular vitamin D and anti-Müllerian hormone (AMH) concentration and its impact on oocyte quality and developmental competence. METHODS: The analysis was performed on 208 follicular fluid (FF) samples obtained from 33 patients undergoing ovarian stimulation as part of in vitro fertilization (IVF) treatment that included intracytoplasmic sperm injection. RESULTS: Our study shows that vitamin D concentration in FF varies according to the developmental stage of the oocyte and corelates with embryo development status on day 3, while AMH concentration in FF is not correlated with the developmental potential of an oocyte. We demonstrated that the levels of vitamin D and AMH were higher in FF than in serum. Moreover we showed that AMH and vitamin D levels were positively correlated in FF but not in serum. CONCLUSION: FF-AMH levels do not appear to be a suitable as noninvasive test of the developmental potential of an oocyte, while FF-vitamin D level can be used to evaluate whether embryos obtained from particular oocytes have potential of reaching the third day of culture. However, our results encourage further research to be carried out on a larger number of patients and testing additional components found in FF such as androgens.


Anti-Mullerian Hormone/analysis , Follicular Fluid/chemistry , Oocytes/growth & development , Vitamin D/analysis , Embryonic Development/physiology , Female , Fertilization in Vitro , Humans , Oocytes/physiology , Ovulation Induction , Prospective Studies , Sperm Injections, Intracytoplasmic
...