Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
ACS Appl Mater Interfaces ; 15(13): 17406-17412, 2023 Apr 05.
Article En | MEDLINE | ID: mdl-36952617

Propagation of electrons along helical molecules adsorbed on surfaces comes along with a robust spin polarization effect called chirality induced spin selectivity CISS. However, experiments on the molecular scale that allow a true correlation of spin effects with the molecular structure are quite rare. Here we have studied the structure of self-assembled chiral molecules and the electronic transmission and spin polarization of the current through the system by means of ambient scanning tunneling microscopy and spectroscopy in heterostructures of various α-helix polyalanine-based molecules (PA) adsorbed on Al2O3/Pt/Au/Co/Au substrates with perpendicular magnetic anisotropy. We have found a phase separation of the molecules into well-ordered enantiopure 2D hexagonal phases and quasi-1D heterochiral-dimer structures, which allows for the analysis of the spin polarization with almost atomic precision of PA in different phases. The spin polarization reaches up to 75% for chemisorbed molecules arranged in a hexagonal phase. On the contrary, for weakly coupled PA molecules without cysteine anchoring groups in a quasi-1D phase, a spin polarization of around 50% was found. Our results show that both the intermolecular interaction as well as the coupling to the substrate are important and point out that collective effects within the molecules and at the interfaces are required to achieve a high chiral induced spin selectivity.

2.
ACS Appl Mater Interfaces ; 14(33): 38013-38020, 2022 Aug 24.
Article En | MEDLINE | ID: mdl-35960822

Polyalanine molecules (PA) with an α-helix conformation have recently attracted a great deal of interest, as the propagation of electrons through the chiral backbone structure comes along with spin polarization of the transmitted electrons. By means of scanning tunneling microscopy and spectroscopy under ambient conditions, PA molecules adsorbed on surfaces of epitaxial magnetic Al2O3/Pt/Au/Co/Au nanostructures with perpendicular anisotropy were studied. Thereby, a correlation between the PA molecules ordering at the surface with the electron tunneling across this hybrid system as a function of the substrate magnetization orientation as well as the coverage density and helicity of the PA molecules was observed. The highest spin polarization values, P, were found for well-ordered self-assembled monolayers and with a defined chemical coupling of the molecules to the magnetic substrate surface, showing that the current-induced spin selectivity is a cooperative effect. Thereby, P deduced from the electron transmission along unoccupied molecular orbitals of the chiral molecules is larger as compared to values derived from the occupied molecular orbitals. Apparently, the larger orbital overlap results in a higher electron mobility, yielding a higher P value. By switching the magnetization direction of the Co layer, it was demonstrated that the non-spin-polarized STM can be used to study chiral molecules with a submolecular resolution, to detect properties of buried magnetic layers and to detect the spin polarization of the molecules from the change in the magnetoresistance of such hybrid structures.

3.
Nanotechnology ; 32(49)2021 Sep 16.
Article En | MEDLINE | ID: mdl-34438391

ZnTe/CdSe/(Zn, Mg)Te core/double-shell nanowires are grown by molecular beam epitaxy by employing the vapor-liquid-solid growth mechanism assisted with gold catalysts. A photoluminescence study of these structures reveals the presence of an optical emission in the near infrared. We assign this emission to the spatially indirect exciton recombination at the ZnTe/CdSe type II interface. This conclusion is confirmed by the observation of a significant blue-shift of the emission energy with an increasing excitation fluence induced by the electron-hole separation at the interface. Cathodoluminescence measurements reveal that the optical emission in the near infrared originates from nanowires and not from two-dimensional residual deposits between them. Moreover, it is demonstrated that the emission energy in the near infrared depends on the average CdSe shell thickness and the average Mg concentration within the (Zn, Mg)Te shell. The main mechanism responsible for these changes is associated with the strain induced by the (Zn, Mg)Te shell in the entire core/shell nanowire heterostructure.

4.
Nanotechnology ; 29(20): 205205, 2018 May 18.
Article En | MEDLINE | ID: mdl-29488898

A detailed magneto-photoluminescence study of individual (Cd, Mn)Te/(Cd, Mg)Te core/shell nanowires grown by molecular beam epitaxy is performed. First of all, an enhancement of the Zeeman splitting due to sp-d exchange interaction between band carriers and Mn-spins is evidenced in these nanostructures. Then, it is found that the value of this splitting depends strongly on the magnetic field direction with respect to the nanowire axis. The largest splitting is observed when the magnetic field is applied perpendicular and the smallest when it is applied parallel to the nanowire axis. This effect is explained in terms of magnetic field induced valence band mixing and evidences the light hole character of the excitonic emission. The values of the light and heavy hole splitting are determined for several individual nanowires based on the comparison of experimental results to theoretical calculations.

5.
Nano Lett ; 12(7): 3404-9, 2012 Jul 11.
Article En | MEDLINE | ID: mdl-22732058

An enhancement of the Zeeman splitting as a result of the incorporation of paramagnetic Mn ions in ZnMnTe/ZnMgTe core/shell nanowires is reported. The studied structures are grown by gold-catalyst assisted molecular beam epitaxy. The near band edge emission of these structures, conspicuously absent in the case of uncoated ZnMnTe nanowires, is activated by the presence of ZnMgTe coating. Giant Zeeman splitting of this emission is studied in ensembles of nanowires with various average Mn concentrations of the order of a few percent, as well as in individual nanowires. Thus, we show convincingly that a strong spin sp-d coupling is indeed present in these structures.

6.
Nano Lett ; 8(11): 4061-5, 2008 Nov.
Article En | MEDLINE | ID: mdl-18842031

It is shown that the growth of II-VI diluted magnetic semiconductor nanowires is possible by the catalytically enhanced molecular beam epitaxy (MBE). Zn(1-x)MnxTe NWs with manganese content up to x=0.60 were produced by this method. X-ray diffraction, Raman spectroscopy, and temperature dependent photoluminescence measurements confirm the incorporation of Mn(2+) ions in the cation substitutional sites of the ZnTe matrix of the NWs.

...