Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Ultrasonics ; 140: 107307, 2024 May.
Article En | MEDLINE | ID: mdl-38579486

BACKGROUND AND OBJECTIVE: With the development of advanced clutter-filtering techniques by singular value decomposition (SVD) and leveraging favorable acquisition settings such as open-chest imaging by a linear high-frequency probe and plane waves, several studies have shown the feasibility of cardiac flow measurements during the entire cardiac cycle, ranging from coronary flow to myocardial perfusion. When applying these techniques in a routine clinical setting, using transthoracic ultrasound imaging, new challenges emerge. Firstly, a smaller aperture is needed that can fit between ribs. Consequently, diverging waves are employed instead of plane waves to achieve an adequate field of view. Secondly, to ensure imaging at a larger depth, the maximum pulse repetition frequency has to be reduced. Lastly, in comparison to the open-chest scenario, tissue motion induced by the heartbeat is significantly stronger. The latter complicates substantially the distinction between clutter and blood signals. METHODS: This study investigates a strategy to overcome these challenges by diverging wave imaging with an optimal number of tilt angles, in combination with dedicated clutter-filtering techniques. In particular, a novel, adaptive, higher-order SVD (HOSVD) clutter filter, which utilizes spatial, temporal, and angular information of the received ultrasound signals, is proposed to enhance clutter and blood separation. RESULTS: When non-negligible tissue motion is present, using fewer tilt angles not only reduces the decorrelation between the received waveforms but also allows for collecting more temporal samples at a given ensemble duration, contributing to improved Doppler performance. The addition of a third angular dimension enables the application of HOSVD, providing greater flexibility in selecting blood separation thresholds from a 3-D tensor. This differs from the conventional threshold selection method in a 2-D spatiotemporal space using SVD. Exhaustive threshold search has shown a significant improvement in Contrast and Contrast-to-Noise ratio for Power Doppler images filtered with HOSVD compared to the SVD-based clutter filter. CONCLUSION: With the improved settings, the obtained Power Doppler images show the feasibility of measuring coronary flow under the influence of non-negligible tissue motion in both in vitro and ex vivo.


Coronary Circulation , Coronary Circulation/physiology , Phantoms, Imaging , Animals , Humans , Algorithms , Echocardiography, Doppler/methods , Image Processing, Computer-Assisted/methods , Blood Flow Velocity/physiology , Swine
2.
Article En | MEDLINE | ID: mdl-31251183

High frame rate imaging is particularly important in echocardiography for better assessment of the cardiac function. Several studies showed that diverging wave imaging (DWI) and multiline transmission (MLT) are promising methods for achieving a high temporal resolution. The aim of this study was to compare MLT and compounded motion compensation (MoCo) DWI for the same transmitted power, same frame rates [image quality and speckle tracking echocardiography (STE) assessment], and same packet size [tissue Doppler imaging (TDI) assessment]. Our results on static images showed that MLT outperforms DW in terms of resolution (by 30% on average). However, in terms of contrast, MLT outperforms DW only for the depth of 11 cm (by 40% on average), the result being reversed at a depth of 4 cm (by 27% on average). In vitro results on a spinning phantom at nine different velocities showed that similar STE axial errors (up to 2.3% difference in median errors and up to 2.1% difference in the interquartile ranges) are obtained with both ultrafast methods. On the other hand, the median lateral STE estimates were up to 13% more accurate with DW than with MLT. On the contrary, the accuracy of TDI was only up to ~3% better with MLT, but the achievable DW Doppler frame rate was up to 20 times higher. However, our overall results showed that the choice of one method relative to the other is therefore dependent on the application. More precisely, in terms of image quality, DW is more suitable for imaging structures at low depths, while MLT can provide an improved image quality at the focal point that can be placed at higher depths. In terms of motion estimation, DW is more suitable for color Doppler-related applications, while MLT could be used to estimate velocities along selected lines of the image.


Echocardiography, Doppler/methods , Image Processing, Computer-Assisted/methods , Animals , Heart/diagnostic imaging , Heart/physiology , Phantoms, Imaging , Swine
...