Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Int J Radiat Biol ; 100(8): 1202-1212, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38953870

RESUMEN

PURPOSE: Radiation-induced alterations in gene expression show great promise for dose reconstruction and for severity prediction of acute health effects. Among several genes explored as potential biomarkers, FDXR is widely used due to high upregulation in white blood cells following radiation exposure. Nonetheless, the absence of a standardized protocols for gene expression-based biodosimetry is a notable gap that warrants attention to enhance the accuracy, reproducibility and reliability. The objective of this study was to evaluate the sensitivity of transcriptional biodosimetry to differences in protocols used by different laboratories and establish guidelines for the calculation of calibration curve using FDXR expression data. MATERIAL AND METHODS: Two sets of irradiated blood samples generated during RENEB exercise were used. The first included samples irradiated with known doses including: 0, 0.25, 0.5, 1, 2, 3 and 4 Gy. The second set consisted of three 'blind' samples irradiated with 1.8 Gy, 0.4 Gy and a sham-irradiated sample. After irradiation, samples were incubated at 37 °C over 24 h and sent to participating laboratories, where RNA isolation and FDXR expression analysis by qPCR were performed using sets of primers/probes and reference genes specific for each laboratory. Calibration curves based on FDXR expression data were generated using non-linear and linear regression and used for dose estimation of 'blind' samples. RESULTS: Dose estimates for sham-irradiated sample (0.020-0.024 Gy) and sample irradiated with 0.4 Gy (0.369-0.381 Gy) showed remarkable consistency across all laboratories, closely approximating the true doses regardless variation in primers/probes and reference genes used. For sample irradiated with 1.8 Gy the dose estimates were less precise (1.198-2.011 Gy) but remained within an acceptable margin for triage within the context of high dose range. CONCLUSION: Methodological differences in reference genes and primers/probes used for FDXR expression measurement do not have a significant impact on the dose estimates generated, provided that all reference genes performed as expected and the primers/probes target a similar set of transcript variants. The preferred method for constructing a calibration curve based on FDXR expression data involves employing linear regression to establish a function that describes the relationship between the logarithm of absorbed dose and FDXR ΔCt values. However, one should be careful with using non-irradiated sample data as these cannot be accurately represented on a logarithmic scale. A standard curve generated using this approach can give reliable dose estimations in a dose range from 50 mGy to 4 Gy at least.


Asunto(s)
Dosis de Radiación , Radiometría , Calibración , Humanos , Radiometría/métodos , Relación Dosis-Respuesta en la Radiación , Masculino , Reproducibilidad de los Resultados
2.
Front Public Health ; 12: 1369201, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638480

RESUMEN

Introduction: Lynch syndrome patients have an inherited predisposition to cancer due to a deficiency in DNA mismatch repair (MMR) genes which could lead to a higher risk of developing cancer if exposed to ionizing radiation. This pilot study aims to reveal the association between MMR deficiency and radiosensitivity at both a CT relevant low dose (20 mGy) and a therapeutic higher dose (2 Gy). Methods: Human colorectal cancer cell lines with (dMMR) or without MMR deficiency (pMMR) were analyzed before and after exposure to radiation using cellular and cytogenetic analyses i.e., clonogenic assay to determine cell reproductive death; sister chromatid exchange (SCE) assay to detect the exchange of DNA between sister chromatids; γH2AX assay to analyze DNA damage repair; and apoptosis analysis to compare cell death response. The advantages and limitations of these assays were assessed in vitro, and their applicability and feasibility investigated for their potential to be used for further studies using clinical samples. Results: Results from the clonogenic assay indicated that the pMMR cell line (HT29) was significantly more radio-resistant than the dMMR cell lines (HCT116, SW48, and LoVo) after 2 Gy X-irradiation. Both cell type and radiation dose had a significant effect on the yield of SCEs/chromosome. When the yield of SCEs/chromosome for the irradiated samples (2 Gy) was normalized against the controls, no significant difference was observed between the cell lines. For the γH2AX assay, 0, 20 mGy and 2 Gy were examined at post-exposure time points of 30 min (min), 4 and 24 h (h). Statistical analysis revealed that HT29 was only significantly more radio-resistant than the MLH1-deficient cells lines, but not the MSH2-deficient cell line. Apoptosis analysis (4 Gy) revealed that HT29 was significantly more radio-resistant than HCT116 albeit with very few apoptotic cells observed. Discussion: Overall, this study showed radio-resistance of the MMR proficient cell line in some assays, but not in the others. All methods used within this study have been validated; however, due to the limitations associated with cancer cell lines, the next step will be to use these assays in clinical samples in an effort to understand the biological and mechanistic effects of radiation in Lynch patients as well as the health implications.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales Hereditarias sin Poliposis , Neoplasias Colorrectales , Síndromes Neoplásicos Hereditarios , Humanos , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Proyectos Piloto , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Línea Celular , Tolerancia a Radiación
3.
Heliyon ; 10(1): e23244, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163095

RESUMEN

Therapy-related acute myeloid leukaemia (t-AML) is a late side effect of previous chemotherapy (ct-AML) and/or radiotherapy (rt-AML) or immunosuppressive treatment. t-AMLs, which account for ∼10-20 % of all AML cases, are extremely aggressive and have a poor prognosis compared to de novo AML. Our hypothesis is that exposure to radiation causes genome-wide epigenetic changes in rt-AML. An epigenome-wide association study was undertaken, measuring over 850K methylation sites across the genome from fifteen donors (five healthy, five de novo, and five t-AMLs). The study predominantly focussed on 94K sites that lie in CpG-rich gene promoter regions. Genome-wide hypomethylation was discovered in AML, primarily in intergenic regions. Additionally, genes specific to AML were identified with promoter hypermethylation. A two-step validation was conducted, both internally, using pyrosequencing to measure methylation levels in specific regions across fifteen primary samples, and externally, with an additional eight AML samples. We demonstrated that the MEST and GATA5 gene promoters, which were previously identified as tumour suppressors, were noticeably hypermethylated in rt-AML, as opposed to other subtypes of AML and control samples. These may indicate the epigenetic involvement in the development of rt-AML at the molecular level and could serve as potential targets for drug therapy in rt-AML.

4.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256152

RESUMEN

Cancer and ionizing radiation exposure are associated with inflammation. To identify a set of radiation-specific signatures of inflammation-associated genes in the blood of partially exposed radiotherapy patients, differential expression of 249 inflammatory genes was analyzed in blood samples from cancer patients and healthy individuals. The gene expression analysis on a cohort of 63 cancer patients (endometrial, head and neck, and prostate cancer) before and during radiotherapy (24 h, 48 h, ~1 week, ~4-8 weeks, and 1 month after the last fraction) identified 31 genes and 15 up- and 16 down-regulated genes. Transcription variability under normal conditions was determined using blood drawn on three separate occasions from four healthy donors. No difference in inflammatory expression between healthy donors and cancer patients could be detected prior to radiotherapy. Remarkably, repeated sampling of healthy donors revealed an individual endogenous inflammatory signature. Next, the potential confounding effect of concomitant inflammation was studied in the blood of seven healthy donors taken before and 24 h after a flu vaccine or ex vivo LPS (lipopolysaccharide) treatment; flu vaccination was not detected at the transcriptional level and LPS did not have any effect on the radiation-induced signature identified. Finally, we identified a radiation-specific signature of 31 genes in the blood of radiotherapy patients that were common for all cancers, regardless of the immune status of patients. Confirmation via MQRT-PCR was obtained for BCL6, MYD88, MYC, IL7, CCR4 and CCR7. This study offers the foundation for future research on biomarkers of radiation exposure, radiation sensitivity, and radiation toxicity for personalized radiotherapy treatment.


Asunto(s)
Neoplasias de la Próstata , Exposición a la Radiación , Oncología por Radiación , Masculino , Humanos , Lipopolisacáridos , Inflamación/genética
5.
iScience ; 26(9): 107530, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37664628

RESUMEN

Ionizing radiation (IR) is a risk factor for acute myeloid leukemia (rAML). Murine rAMLs feature both hemizygous chromosome 2 deletions (Del2) and point mutations (R235) within the hematopoietic regulatory gene Spi1. We generated a heterozygous CBA Spi1 R235 mouse (CBASpm/+) which develops de novo AML with 100% incidence by ∼12 months old and shows a dose-dependent reduction in latency following X-irradiation. These effects are reduced on an AML-resistant C57Bl6 genetic background. CBASpm/Gfp reporter mice show increased Gfp expression, indicating compensation for Spm-induced Spi1 haploinsufficiency. Del2 is always detected in both de novo and rAMLs, indicating that biallelic Spi1 mutation is required for AML. CBASpm/+ mice show that a single Spm modification is sufficient for initiating AML development with complete penetrance, via the "two-hit" mechanism and this is accelerated by IR exposure. Similar SPI1/PU.1 polymorphisms in humans could potentially lead to enhanced susceptibility to IR following medical or environmental exposure.

6.
Adv Radiat Oncol ; 8(4): 101215, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152486

RESUMEN

Purpose: The ongoing SARS-CoV-2 pandemic has resulted in over 6.3 million deaths and 560 million COVID-19 cases worldwide. Clinical management of hospitalized patients is complex due to the heterogeneous course of COVID-19. Low-dose radiation therapy is known to dampen localized chronic inflammation and has been suggested to be used to reduce lung inflammation in patients with COVID-19. However, it is unknown whether SARS-CoV-2 alters the radiation response and associated radiation exposure related risk. Methods and Materials: We generated gene expression profiles from circulating leukocytes of hospitalized patients with COVID-19 and healthy donors. Results: The p53 signaling pathway was found to be dysregulated, with mRNA levels of p53, ATM, and CHK2 being lower in patients with COVID-19. Several key p53 target genes involved in cell cycle arrest, apoptosis, and p53 feedback inhibition were upregulated in patients with COVID-19 while other p53 target genes were downregulated. This dysregulation has functional consequences as the transcription of p53-dependant genes (CCNG1, GADD45A, DDB2, SESN1, FDXR, APOBEC) was reduced 24 hours after x-ray exposure ex vivo to both low (100 mGy) or high (2 Gy) doses. Conclusions: SARS-CoV-2 infection affects a DNA damage response that may modify radiation-induced health risks in exposed patients with COVID-19.

7.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239971

RESUMEN

Extracellular vesicles (EVs), through their cargo, are important mediators of bystander responses in the irradiated bone marrow (BM). MiRNAs carried by EVs can potentially alter cellular pathways in EV-recipient cells by regulating their protein content. Using the CBA/Ca mouse model, we characterised the miRNA content of BM-derived EVs from mice irradiated with 0.1 Gy or 3 Gy using an nCounter analysis system. We also analysed proteomic changes in BM cells either directly irradiated or treated with EVs derived from the BM of irradiated mice. Our aim was to identify key cellular processes in the EV-acceptor cells regulated by miRNAs. The irradiation of BM cells with 0.1 Gy led to protein alterations involved in oxidative stress and immune and inflammatory processes. Oxidative stress-related pathways were also present in BM cells treated with EVs isolated from 0.1 Gy-irradiated mice, indicating the propagation of oxidative stress in a bystander manner. The irradiation of BM cells with 3 Gy led to protein pathway alterations involved in the DNA damage response, metabolism, cell death and immune and inflammatory processes. The majority of these pathways were also altered in BM cells treated with EVs from mice irradiated with 3 Gy. Certain pathways (cell cycle, acute and chronic myeloid leukaemia) regulated by miRNAs differentially expressed in EVs isolated from mice irradiated with 3 Gy overlapped with protein pathway alterations in BM cells treated with 3 Gy EVs. Six miRNAs were involved in these common pathways interacting with 11 proteins, suggesting the involvement of miRNAs in the EV-mediated bystander processes. In conclusion, we characterised proteomic changes in directly irradiated and EV-treated BM cells, identified processes transmitted in a bystander manner and suggested miRNA and protein candidates potentially involved in the regulation of these bystander processes.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Médula Ósea/metabolismo , Proteómica , Ratones Endogámicos CBA , Vesículas Extracelulares/metabolismo , Radiación Ionizante
8.
Fam Cancer ; 22(1): 61-70, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35718836

RESUMEN

The aim of this review is to investigate the literature pertaining to the potential risks of low-dose ionizing radiation to Lynch syndrome patients by use of computed tomography (CT), either diagnostic CT colonography (CTC), standard staging CT or CT surveillance. Furthermore, this review explores the potential risks of using radiotherapy for treatment of rectal cancer in these patients. No data or longitudinal observational studies of the impact of radiation exposure on humans with Lynch syndrome were identified. Limited experimental studies utilizing cell lines and primary cells exposed to both low and high radiation doses have been carried out to help determine radio-sensitivity associated with DNA mismatch repair gene deficiency, the defining feature of Lynch syndrome. On balance, these studies suggest that mismatch repair deficient cells may be relatively radio-resistant (particularly for low dose rate exposures) with higher mutation rates, albeit no firm conclusions can be drawn. Mouse model studies, though, showed an increased risk of developing colorectal tumors in mismatch repair deficient mice exposed to radiation doses around 2 Gy. With appropriate ethical approval, further studies investigating radiation risks associated with CT imaging and radiotherapy relevant doses using cells/tissues derived from confirmed Lynch patients or genetically modified animal models are urgently required for future clinical guidance.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Neoplasias Colorrectales , Síndromes Neoplásicos Hereditarios , Humanos , Animales , Ratones , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico por imagen , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/genética , Radiación Ionizante , Reparación de la Incompatibilidad de ADN
10.
Int J Radiat Biol ; 98(12): 1802-1815, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36040845

RESUMEN

PURPOSE: The concept of the adverse outcome pathway (AOP) has recently gained significant attention as to its potential for incorporation of mechanistic biological information into the assessment of adverse health outcomes following ionizing radiation (IR) exposure. This work is an account of the activities of an international expert group formed specifically to develop an AOP for IR-induced leukemia. Group discussions were held during dedicated sessions at the international AOP workshop jointly organized by the MELODI (Multidisciplinary European Low Dose Initiative) and the ALLIANCE (European Radioecology Alliance) associations to consolidate knowledge into a number of biological key events causally linked by key event relationships and connecting a molecular initiating event with the adverse outcome. Further knowledge review to generate a weight of evidence support for the Key Event Relationships (KERs) was undertaken using a systematic review approach. CONCLUSIONS: An AOP for IR-induced acute myeloid leukemia was proposed and submitted for review to the OECD-curated AOP-wiki (aopwiki.org). The systematic review identified over 500 studies that link IR, as a stressor, to leukemia, as an adverse outcome. Knowledge gap identification, although requiring a substantial effort via systematic review of literature, appears to be one of the major added values of the AOP concept. Further work, both within this leukemia AOP working group and other similar working groups, is warranted and is anticipated to produce highly demanded products for the radiation protection research community.


Asunto(s)
Rutas de Resultados Adversos , Leucemia Inducida por Radiación , Protección Radiológica , Humanos
11.
Radiat Environ Biophys ; 61(3): 361-373, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35864346

RESUMEN

In vitro experiments show that the cells possibly responsible for radiation-induced acute myeloid leukemia (rAML) exhibit low-dose hyper-radiosensitivity (HRS). In these cells, HRS is responsible for excess cell killing at low doses. Besides the endpoint of cell killing, HRS has also been shown to stimulate the low-dose formation of chromosomal aberrations such as deletions. Although HRS has been investigated extensively, little is known about the possible effect of HRS on low-dose cancer risk. In CBA mice, rAML can largely be explained in terms of a radiation-induced Sfpi1 deletion and a point mutation in the remaining Sfpi1 gene copy. The aim of this paper is to present and quantify possible mechanisms through which HRS may influence low-dose rAML incidence in CBA mice. To accomplish this, a mechanistic rAML CBA mouse model was developed to study HRS-dependent AML onset after low-dose photon irradiation. The rAML incidence was computed under the assumptions that target cells: (1) do not exhibit HRS; (2) HRS only stimulates cell killing; or (3) HRS stimulates cell killing and the formation of the Sfpi1 deletion. In absence of HRS (control), the rAML dose-response curve can be approximated with a linear-quadratic function of the absorbed dose. Compared to the control, the assumption that HRS stimulates cell killing lowered the rAML incidence, whereas increased incidence was observed at low doses if HRS additionally stimulates the induction of the Sfpi1 deletion. In conclusion, cellular HRS affects the number of surviving pre-leukemic cells with an Sfpi1 deletion which, depending on the HRS assumption, directly translates to a lower/higher probability of developing rAML. Low-dose HRS may affect cancer risk in general by altering the probability that certain mutations occur/persist.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia Inducida por Radiación , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Incidencia , Leucemia Mieloide Aguda/genética , Leucemia Inducida por Radiación/epidemiología , Ratones , Ratones Endogámicos CBA , Tolerancia a Radiación
13.
Cancers (Basel) ; 14(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35681629

RESUMEN

External beam radiation therapy leads to cellular activation of the DNA damage response (DDR). DNA double-strand breaks (DSBs) activate the ATM/CHEK2/p53 pathway, inducing the transcription of stress genes. The dynamic nature of this transcriptional response has not been directly observed in vivo in humans. In this study we monitored the messenger RNA transcript abundances of nine DNA damage-responsive genes (CDKN1A, GADD45, CCNG1, FDXR, DDB2, MDM2, PHPT1, SESN1, and PUMA), eight of them regulated by p53 in circulating blood leukocytes at different time points (2, 6-8, 16-18, and 24 h) in cancer patients (lung, neck, brain, and pelvis) undergoing radiotherapy. We discovered that, although the calculated mean physical dose to the blood was very low (0.038-0.169 Gy), an upregulation of Ferredoxin reductase (FDXR) gene transcription was detectable 2 h after exposure and was dose dependent from the lowest irradiated percentage of the body (3.5% whole brain) to the highest, (up to 19.4%, pelvic zone) reaching a peak at 6-8 h. The radiation response of the other genes was not strong enough after such low doses to provide meaningful information. Following multiple fractions, the expression level increased further and was still significantly up-regulated by the end of the treatment. Moreover, we compared FDXR transcriptional responses to ionizing radiation (IR) in vivo with healthy donors' blood cells exposed ex vivo and found a good correlation in the kinetics of expression from the 8-hours time-point onward, suggesting that a molecular transcriptional regulation mechanism yet to be identified is involved. To conclude, we provided the first in vivo human report of IR-induced gene transcription temporal response of a panel of p53-dependant genes. FDXR was demonstrated to be the most responsive gene, able to reliably inform on the low doses following partial body irradiation of the patients, and providing an expression pattern corresponding to the % of body exposed. An extended study would provide individual biological dosimetry information and may reveal inter-individual variability to predict radiotherapy-associated adverse health outcomes.

14.
Int J Radiat Biol ; 98(5): 843-854, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34606416

RESUMEN

PURPOSE: In a nuclear or radiological event, an early diagnostic or prognostic tool is needed to distinguish unexposed from low- and highly exposed individuals with the latter requiring early and intensive medical care. Radiation-induced gene expression (GE) changes observed within hours and days after irradiation have shown potential to serve as biomarkers for either dose reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of GE markers lies in their capability for early (1-3 days after irradiation), high-throughput, and point-of-care (POC) diagnosis required for the prediction of the acute radiation syndrome (ARS). CONCLUSIONS: As a key session of the ConRad conference in 2021, experts from different institutions were invited to provide state-of-the-art information on a range of topics including: (1) Biodosimetry: What are the current efforts to enhance the applicability of this method to perform retrospective biodosimetry? (2) Effect prediction: Can we apply radiation-induced GE changes for prediction of acute health effects as an approach, complementary to and integrating retrospective dose estimation? (3) High-throughput and point-of-care diagnostics: What are the current developments to make the GE approach applicable as a high-throughput as well as a POC diagnostic platform? (4) Low level radiation: What is the lowest dose range where GE can be used for biodosimetry purposes? (5) Methodological considerations: Different aspects of radiation-induced GE related to more detailed analysis of exons, transcripts and next-generation sequencing (NGS) were reported.


Asunto(s)
Síndrome de Radiación Aguda , Radiometría , Síndrome de Radiación Aguda/genética , Biomarcadores , Expresión Génica , Humanos , Radiometría/métodos , Estudios Retrospectivos
15.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638945

RESUMEN

The quest for the discovery and validation of radiosensitivity biomarkers is ongoing and while conventional bioassays are well established as biomarkers, molecular advances have unveiled new emerging biomarkers. Herein, we present the validation of a new 4-gene signature panel of CDKN1, FDXR, SESN1 and PCNA previously reported to be radiation-responsive genes, using the conventional G2 chromosomal radiosensitivity assay. Radiation-induced G2 chromosomal radiosensitivity at 0.05 Gy and 0.5 Gy IR is presented for a healthy control (n = 45) and a prostate cancer (n = 14) donor cohort. For the prostate cancer cohort, data from two sampling time points (baseline and Androgen Deprivation Therapy (ADT)) is provided, and a significant difference (p > 0.001) between 0.05 Gy and 0.5 Gy was evident for all donor cohorts. Selected donor samples from each cohort also exposed to 0.05 Gy and 0.5 Gy IR were analysed for relative gene expression of the 4-gene signature. In the healthy donor cohort, there was a significant difference in gene expression between IR dose for CDKN1, FXDR and SESN1 but not PCNA and no significant difference found between all prostate cancer donors, unless they were classified as radiation-induced G2 chromosomal radiosensitive. Interestingly, ADT had an effect on radiation response for some donors highlighting intra-individual heterogeneity of prostate cancer donors.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Proteínas de Choque Térmico/genética , Proteínas Mitocondriales/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Antígeno Nuclear de Célula en Proliferación/genética , Neoplasias de la Próstata/genética , Tolerancia a Radiación/genética , Transcriptoma , Adulto , Anciano , Anciano de 80 o más Años , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Estudios de Casos y Controles , Cromosomas/efectos de la radiación , Estudios de Cohortes , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa Multiplex/métodos , Pronóstico , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/tratamiento farmacológico , Dosis de Radiación , Tolerancia a Radiación/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Adulto Joven
16.
J Pers Med ; 11(7)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202274

RESUMEN

Humans have learned to harness the power of radiation for therapeutic ends, with 50% of all patients diagnosed with cancer undergoing radiotherapy as part of their treatment [...].

17.
Front Immunol ; 12: 680503, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34079557

RESUMEN

In the past decade, radiation therapy (RT) entered the era of personalized medicine, following the striking improvements in radiation delivery and treatment planning optimization, and in the understanding of the cancer response, including the immunological response. The next challenge is to identify the optimal radiation regimen(s) to induce a clinically relevant anti-tumor immunity response. Organs at risks and the tumor microenvironment (e.g. endothelial cells, macrophages and fibroblasts) often limit the radiation regimen effects due to adverse toxicities. Here, we reviewed how RT can modulate the immune response involved in the tumor control and side effects associated with inflammatory processes. Moreover, we discussed the versatile roles of tumor microenvironment components during RT, how the innate immune sensing of RT-induced genotoxicity, through the cGAS-STING pathway, might link the anti-tumor immune response, radiation-induced necrosis and radiation-induced fibrosis, and how a better understanding of the switch between favorable and deleterious events might help to define innovative approaches to increase RT benefits in patients with cancer.


Asunto(s)
Inmunidad/efectos de la radiación , Radioterapia/efectos adversos , Animales , Efecto Espectador/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Humanos , Proteínas de la Membrana/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/radioterapia , Nucleotidiltransferasas/metabolismo , Especificidad de Órganos/inmunología , Especificidad de Órganos/efectos de la radiación , Radiación Ionizante , Radioterapia/métodos , Transducción de Señal/efectos de la radiación , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de la radiación
18.
Radiat Oncol ; 16(1): 83, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33941218

RESUMEN

BACKGROUND: This communication reports the identification of a new panel of transcriptional changes in inflammation-associated genes observed in response to ionising radiation received by radiotherapy patients. METHODS: Peripheral blood samples were taken with ethical approval and informed consent from a total of 20 patients undergoing external beam radiotherapy for breast, lung, gastrointestinal or genitourinary tumours. Nanostring nCounter analysis of transcriptional changes was carried out in samples prior and 24 h post-delivery of the 1st radiotherapy fraction, just prior to the 5th or 6th fraction, and just before the last fraction. RESULTS: Statistical analysis with BRB-ArrayTools, GLM MANOVA and nSolver, revealed a radiation responsive panel of genes which varied by patient group (type of cancer) and with time since exposure (as an analogue for dose received), which may be useful as a biomarker of radiation response. CONCLUSION: Further validation in a wider group of patients is ongoing, together with work towards a full understanding of patient specific responses in support of personalised approaches to radiation medicine.


Asunto(s)
Biomarcadores de Tumor/sangre , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Inflamación/genética , Neoplasias/sangre , Radiación Ionizante , Transcriptoma/efectos de la radiación , Biomarcadores de Tumor/genética , Neoplasias de la Mama/sangre , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/radioterapia , Femenino , Neoplasias Gastrointestinales/sangre , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/inmunología , Neoplasias Gastrointestinales/radioterapia , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/radioterapia , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/radioterapia , Proyectos Piloto , Pronóstico , Neoplasias Urogenitales/sangre , Neoplasias Urogenitales/genética , Neoplasias Urogenitales/inmunología , Neoplasias Urogenitales/radioterapia
19.
Int J Radiat Biol ; 97(5): 675-686, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33826469

RESUMEN

PURPOSE: For triage purposes following a nuclear accident or a terrorist event, gene expression biomarkers in blood have been demonstrated to be good bioindicators of ionizing radiation (IR) exposure and can be used to assess the dose received by exposed individuals. Many IR-sensitive genes are regulated by the DNA damage response pathway, and modulators of this pathway could potentially affect their expression level and therefore alter accurate dose estimations. In the present study, we addressed the potential influence of temperature, sample transport conditions and the blood cell fraction analyzed on the transcriptional response of the following radiation-responsive genes: FDXR, CCNG1, MDM2, PHPT1, APOBEC3H, DDB2, SESN1, P21, PUMA, and GADD45. MATERIALS AND METHODS: Whole blood from healthy donors was exposed to a 2 Gy X-ray dose with a dose rate of 0.5 Gy/min (output 13 mA, 250 kV peak, 0.2 mA) and incubated for 24 h at either 37, 22, or 4 °C. For mimicking the effect of transport conditions at different temperatures, samples incubated at 37 °C for 24 h were kept at 37, 22 or 4 °C for another 24 h. Comparisons of biomarker responses to IR between white blood cells (WBCs), peripheral blood mononuclear cells (PBMCs) and whole blood were carried out after a 2 Gy X-ray exposure and incubation at 37 °C for 24 hours. RESULTS: Hypothermic conditions (22 or 4 °C) following irradiation drastically inhibited transcriptional responses to IR exposure. However, sample shipment at different temperatures did not affect gene expression level except for SESN1. The transcriptional response to IR of specific genes depended on the cell fraction used, apart from FDXR, CCNG1, and SESN1. CONCLUSION: In conclusion, temperature during the incubation period and cell fraction but not the storing conditions during transport can influence the transcriptional response of specific genes. However, FDXR and CCNG1 showed a consistent response under all the different conditions tested demonstrating their reliability as individual biological dosimetry biomarkers.


Asunto(s)
Regulación de la Expresión Génica/efectos de la radiación , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de la radiación , Radiometría/métodos , Temperatura , Adulto , Relación Dosis-Respuesta en la Radiación , Humanos , Masculino
20.
Antioxidants (Basel) ; 11(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35052515

RESUMEN

Haematopoietic bone marrow cells are amongst the most sensitive to ionizing radiation (IR), initially resulting in cell death or genotoxicity that may later lead to leukaemia development, most frequently Acute Myeloid Leukaemia (AML). The target cells for radiation-induced Acute Myeloid Leukaemia (rAML) are believed to lie in the haematopoietic stem and progenitor cell (HSPC) compartment. Using the inbred strain CBA/Ca as a murine model of rAML, progress has been made in understanding the underlying mechanisms, characterisation of target cell population and responses to IR. Complex regulatory systems maintain haematopoietic homeostasis which may act to modulate the risk of rAML. However, little is currently known about the role of metabolic factors and diet in these regulatory systems and modification of the risk of AML development. This study characterises cellular proliferative and clonogenic potential as well as metabolic changes within murine HSPCs under oxidative stress and X-ray exposure. Ambient oxygen (normoxia; 20.8% O2) levels were found to increase irradiated HSPC-stress, stimulating proliferative activity compared to low oxygen (3% O2) levels. IR exposure has a negative influence on the proliferative capability of HSPCs in a dose-dependent manner (0-2 Gy) and this is more pronounced under a normoxic state. One Gy x-irradiated HSPCs cultured under normoxic conditions displayed a significant increase in oxygen consumption compared to those cultured under low O2 conditions and to unirradiated HSPCs. Furthermore, mitochondrial analyses revealed a significant increase in mitochondrial DNA (mtDNA) content, mitochondrial mass and membrane potential in a dose-dependent manner under normoxic conditions. Our results demonstrate that both IR and normoxia act as stressors for HSPCs, leading to significant metabolic deregulation and mitochondrial dysfunctionality which may affect long term risks such as leukaemia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA