Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Photochem Photobiol Sci ; 22(9): 2189-2204, 2023 Sep.
Article En | MEDLINE | ID: mdl-37270745

Plants are continuously exposed to combinations of abiotic and biotic stressors. While much is known about responses to individual stressors, understanding of plant responses to combinations of stressors is limited. The effects of combined exposure to drought and UV radiation are particularly relevant in the context of climate change. In this study it was explored whether UV-exposure can be used as a tool to prime stress-resistance in plants grown under highly protected culture conditions. It was hypothesised that priming mint plantlets (Mentha spicata L.) with a low-dose of UV irradiance can alleviate the drought effect caused by a change in humidity upon transplanting. Plants were grown for 30 days on agar in sealed tissue culture containers. During this period, plants were exposed to ~ 0.22 W m-2 UV-B for 8 days, using either UV-blocking or UV- transmitting filters. Plants were then transplanted to soil and monitored for a further 7 days. It was found that non-UV exposed mint plants developed necrotic spots on leaves, following transfer to soil, but this was not the case for plants primed with UV. Results showed that UV induced stress resistance is associated with an increase in antioxidant capacity, as well as a decrease in leaf area. UV-induced stress resistance can be beneficial in a horticultural setting, where priming plants with UV-B can be used as a tool in the production of commercial crops.


Stress, Physiological , Ultraviolet Rays , Antioxidants , Droughts , Crops, Agricultural
2.
Biomolecules ; 12(12)2022 12 14.
Article En | MEDLINE | ID: mdl-36551307

UV-B and UV-A radiation are natural components of solar radiation that can cause plant stress, as well as induce a range of acclimatory responses mediated by photoreceptors. UV-mediated accumulation of flavonoids and glucosinolates is well documented, but much less is known about UV effects on carotenoid content. Carotenoids are involved in a range of plant physiological processes, including photoprotection of the photosynthetic machinery. UV-induced changes in carotenoid profile were quantified in plants (Arabidopsis thaliana) exposed for up to ten days to supplemental UV radiation under growth chamber conditions. UV induces specific changes in carotenoid profile, including increases in antheraxanthin, neoxanthin, violaxanthin and lutein contents in leaves. The extent of induction was dependent on exposure duration. No individual UV-B (UVR8) or UV-A (Cryptochrome or Phototropin) photoreceptor was found to mediate this induction. Remarkably, UV-induced accumulation of violaxanthin could not be linked to protection of the photosynthetic machinery from UV damage, questioning the functional relevance of this UV response. Here, it is argued that plants exploit UV radiation as a proxy for other stressors. Thus, it is speculated that the function of UV-induced alterations in carotenoid profile is not UV protection, but rather protection against other environmental stressors such as high intensity visible light that will normally accompany UV radiation.


Arabidopsis Proteins , Arabidopsis , Ultraviolet Rays/adverse effects , Arabidopsis/metabolism , Carotenoids/metabolism , Photosynthesis , Arabidopsis Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism
3.
Plant Physiol Biochem ; 183: 36-45, 2022 Jul 15.
Article En | MEDLINE | ID: mdl-35561499

Induction of metabolite biosynthesis and accumulation is one of the most prominent UV-mediated changes in plants, whether during eustress (positive response) or distress (negative response). However, despite evidence suggesting multiple linkages between UV exposure and carotenoid induction in plants, there is no consensus in the literature concerning the direction and/or amplitude of these effects. Here, we compiled publications that characterised the relative impact of UV on the content of individual carotenoids and subjected the created database to a meta-analysis in order to acquire new, fundamental insights in responses of the carotenoid pool to UV exposure. Overall, it was found that violaxanthin was the only carotenoid compound that was significantly and consistently induced as a result of UV exposure. Violaxanthin accumulation was accompanied by a UV dose dependent decrease in antheraxanthin and zeaxanthin. The resulting shift in the state of the xanthophyll cycle would normally occur when plants are exposed to low light and this is associated with increased susceptibility to photoinhibition. Although UV induced violaxanthin accumulation is positively linked to the daily UV dose, the current dataset is too small to establish a link with plant stress, or even experimental growth conditions. In summary, the effects of UV radiation on carotenoids are multifaceted and compound-specific, and there is a need for a systematic analysis of dose-response and wavelength dependencies, as well as of interactive effects with further environmental parameters.


Carotenoids , Ultraviolet Rays , Carotenoids/metabolism , Plants/metabolism , Zeaxanthins
4.
Food Chem ; 377: 131955, 2022 May 30.
Article En | MEDLINE | ID: mdl-34990953

The limited understanding of the effect of pre-and post-harvest techniques still hinders the full exploitation of seaweed. Here, the effect of harvest site, long term storage and species on the elemental composition, fatty acid profile, lipid content, and antioxidant properties were determined in eight intertidal seaweed species common to Scotland, harvested for potential food application and stored for up to 128 weeks. Result showed that the most significant variation was due to species, with no statistical link found for the combined interaction effect of both storage duration and harvest site in most cases, except for the antioxidant parameters and some selected elements, which was limited to some seaweed species. Overall, our result showed that the chemical profiles of the seaweed species studied were remarkably consistent and unaffected by long term storage. Thus, suggesting that seaweeds sampled from Scotland could be a valuable resource for the development of functional foods.


Antioxidants , Seaweed , Fatty Acids , Minerals , Vegetables
...