Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 91
2.
Sci Rep ; 13(1): 19961, 2023 11 15.
Article En | MEDLINE | ID: mdl-37968314

Delay in wound healing remains one of diabetes's worse side effects, which increases mortality. The proposed study sought to scrutinize the implications of bee gomogenat (BG) on diabetic's wound closure in a streptozotocin-(STZ)-enhanced type-1 diabetes model's rodents. We used 3 different mice groups: group 1 non-diabetic rodents "serving as control", group 2 diabetic rodents, and group3 BG-treated diabetic rodents. We noticed that diabetic rodents experience a delayed wound closure, which emerged as a significant (*P < 0.05) decline in the deposition of collagen as compared to control non-diabetic animals. We noticed that diabetic rodents have a delayed wound closure characterized by a significant (*P < 0.05) decrease in the CD31 expression (indicator for wound angiogenesis and neovascularization) and an apparent elevation in the expression of such markers of inflammation as MCP-1 and HSP-70 as compared to control animals. Moreover, diabetic animals displayed a significant (*P < 0.05) increase in the expression of gap junction proteins Cx43 and a significant decrease in the expression of Panx3 in the wounded skin tissues when compared to the controls. Intriguingly, topical application with BG on the diabetic wounded skin tissues contributes to a significant (#P < 0.05) enhancing in the collagen deposition, up-regulating the level of CD31 expression and a significant (#P < 0.05) down-regulation in the MCP-1 and HSP-70 expressions as compared to diabetic non-treated animals. The expression's levels of Cx43 and Panx3 were significantly (#P < 0.05) retrieved in diabetic rodents after BG treatment. Taken together, our findings showed for the first time that BG promotes the recovering process and accelerated the closure of diabetic related wounds.


Connexin 43 , Diabetes Mellitus, Experimental , Mice , Bees , Animals , Streptozocin/pharmacology , Connexin 43/metabolism , Connexins/metabolism , Diabetes Mellitus, Experimental/metabolism , Wound Healing , Collagen/metabolism , Skin/metabolism
3.
Biomed Pharmacother ; 169: 115934, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-38000357

It has been demonstrated that cold atmospheric plasma (CAP) accelerates the wound healing process, however the underlying molecular pathways behind this effect remain unclear. Thus, the goal of the proposed investigation is to elucidate the therapeutic advantages of CAP on angiogenesis, pyroptotic, oxidative stress, and inflammatory mediators during the wound-healing mechanisms associated with diabetes. Intraperitoneal administration of streptozotocin (STZ, 60 mg/Kg) of body weight was used to induce type-1 diabetes. Seventy-five male mice were randomized into 3 groups: the control non-diabetic group, the diabetic group that was not treated, and the diabetic group that was treated with CAP. The key mediators of pyroptosis and its impact on the slow healing process of diabetic wounds were examined using histological investigations employing H&E staining, immunohistochemistry, ELISA, and Western blotting analysis. Angiogenesis proteins (VEGF, Ang-1, and HO-1) showed a significant decline in expression concentrations in the diabetic wounds, indicating that diabetic animals' wounds were less likely to heal. Furthermore, compared to the controls, the major mediators of pyroptosis (NLRP-3, IL-1ß, and caspase-1), oxidative stress (iNOS and NO), and inflammation (TNF-α and IL-6) have higher expression levels in the diabetic wounds. These factors substantially impede the healing mechanism of diabetic wounds. Interestingly, our results disclosed the therapeutic impacts of CAP treatment in the healing process of diabetic wounds via significantly regulating the expression levels of angiogenesis, pyroptosis, oxidative stress and pro-inflammatory mediators. Our findings demonstrated the curative likelihood of CAP and the underlying mechanisms for enhancing the healing process of diabetic wounds.


Diabetes Mellitus, Experimental , Plasma Gases , Male , Mice , Animals , Vascular Endothelial Growth Factor A/metabolism , Caspase 1/metabolism , Plasma Gases/therapeutic use , Diabetes Mellitus, Experimental/metabolism , Oxidative Stress , Inflammation Mediators/metabolism
4.
Environ Sci Pollut Res Int ; 30(53): 114152-114165, 2023 Nov.
Article En | MEDLINE | ID: mdl-37855965

Our study helps to evaluate the immune response, antioxidative status, and resistance against heat stress (HS) in Clarias gariepinus treated with propolis extraction; the results will contribute to theories of fish physiology and immunity under high-temperature conditions. Forty-five fish were divided into three equal groups: the control, the HS group at 36 °C, and the HS treated with alcoholic extraction of propolis that dissolved in water for 3 weeks. The results of our study suggested that the stress response differs among tissues thymus, spleen, and liver. All the tissues showed alteration in morphological and cytological structure at the light microscope (LM) and transmission electron microscope (TEM); thymus showed edema and thymocyte destruction; the spleen detected collagen deposition, and the liver displayed endoplasmic reticulum amplification (ER). In addition, we examined oxidative stress and antioxidant defenses (lipid peroxidation, catalase, and glutathione) of the spleen and measured blood biochemical parameters (alanine transaminase and aspartic transaminase levels) after heat stress. However, this toxic effect of HS was neutralized by the propolis extraction. To conclude, propolis is recommended to cope with the impacts of heat stress on catfish (Clarias gariepinus) by improving immunity and antioxidative resistance.


Catfishes , Propolis , Animals , Propolis/pharmacology , Catfishes/metabolism , Oxidative Stress , Antioxidants/metabolism , Glutathione/pharmacology
5.
Sci Rep ; 12(1): 21852, 2022 12 17.
Article En | MEDLINE | ID: mdl-36528674

Impaired wound healing is one of the most critical complications associated with diabetes mellitus. Infections and foot ulcers are major causes of morbidity for diabetic patients. The current treatment of diabetic foot ulcers, commonly used antibiotics, is associated with the development of bacterial resistance. Hence, novel and more effective natural therapeutic antibacterial agents are urgently needed and should be developed against the pathogenic bacteria inhabiting diabetic wounds. Therefore, the current study aimed to investigate the impact of fig latex on pathogenic bacteria and its ability to promote the healing process of diabetic wounds. The pathogenic bacteria were isolated from patients with diabetic foot ulcers admitted to Assiut University Hospital. Fig latex was collected from trees in the Assiut region, and its chemical composition was analyzed using GC‒MS. The antibacterial efficacy of fig latex was assessed on the isolated bacteria. An in vivo study to investigate the effect of fig latex on diabetic wound healing was performed using three mouse groups: nondiabetic control mice, diabetic mice and diabetic mice treated with fig latex. The influence of fig latex on the expression levels of ß-defensin-1, PECAM-1, CCL2 and ZO-1 and collagen formation was investigated. The GC‒MS analysis demonstrated the presence of triterpenoids, comprising more than 90% of the total latex content. Furthermore, using a streptozotocin-induced diabetic mouse model, topical treatment of diabetic wound tissues with fig latex was shown to accelerate and improve wound closure by increasing the expression levels of ß-defensin-1, collagen, and PECAM-1 compared to untreated diabetic wounds. Additionally, fig latex decreased the expression levels of ZO-1 and CCL2.


Diabetes Mellitus, Experimental , Diabetic Foot , Ficus , beta-Defensins , Humans , Mice , Animals , Diabetic Foot/drug therapy , beta-Defensins/metabolism , Latex/pharmacology , Latex/therapeutic use , Ficus/metabolism , Diabetes Mellitus, Experimental/metabolism , Platelet Endothelial Cell Adhesion Molecule-1 , Collagen/metabolism , Bacteria/metabolism , Anti-Bacterial Agents/therapeutic use
6.
Environ Sci Pollut Res Int ; 29(45): 68990-69007, 2022 Sep.
Article En | MEDLINE | ID: mdl-35554836

Diabetes mellitus (DM) is a metabolic disorder that causes severe complications in several tissues due to redox imbalances, which in turn cause defective angiogenesis in response to ischemia and activate a number of proinflammatory pathways. Our study aimed to investigate the effect of bee gomogenat (BG) dietary supplementation on the architecture of immune organs in a streptozotocin (STZ)-induced type 1 diabetes (T1D) mouse model. Three animal groups were used: the control non-diabetic, diabetic, and BG-treated diabetic groups. STZ-induced diabetes was associated with increased levels of blood glucose, ROS, and IL-6 and decreased levels of IL-2, IL-7, IL-4, and GSH. Moreover, diabetic mice showed alterations in the expression of autophagy markers (LC3, Beclin-1, and P62) and apoptosis markers (Bcl-2 and Bax) in the thymus, spleen, and lymph nodes. Most importantly, the phosphorylation level of AKT (a promoter of cell survival) was significantly decreased, but the expression levels of MCP-1 and HSP-70 (markers of inflammation) were significantly increased in the spleen and lymph nodes in diabetic mice compared to control animals. Interestingly, oral supplementation with BG restored the levels of blood glucose, ROS, IL-6, IL-2, IL-4, IL-7, and GSH in diabetic mice. Treatment with BG significantly abrogated apoptosis and autophagy in lymphoid organs in diabetic mice by restoring the expression levels of LC3, Beclin-1, P62, Bcl-2, and Bax; decreasing inflammatory signals by downregulating the expression of MCP-1 and HSP-70; and promoting cell survival by enhancing the phosphorylation of AKT. Our data were the first to reveal the therapeutic potential of BG on the architecture of lymphoid organs and enhancing the immune system during T1D.


Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Animals , Apoptosis , Autophagy , Beclin-1/metabolism , Beclin-1/pharmacology , Bees , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Interleukin-2/metabolism , Interleukin-2/pharmacology , Interleukin-2/therapeutic use , Interleukin-4/metabolism , Interleukin-4/pharmacology , Interleukin-4/therapeutic use , Interleukin-6/metabolism , Interleukin-7/metabolism , Interleukin-7/pharmacology , Interleukin-7/therapeutic use , Mice , Oxidative Stress , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Streptozocin/pharmacology , Streptozocin/therapeutic use , bcl-2-Associated X Protein/metabolism
7.
Saudi J Biol Sci ; 28(4): 2374-2380, 2021 Apr.
Article En | MEDLINE | ID: mdl-33911952

Treating drug-resistant cancer cells is a clinical challenge and it is also vital to screen for new cancer drugs. Multiple myeloma (MM) is a plasma cell clonal cancer that, despite many experimental therapeutics, remains incurable. In this study, two MM cell line lines U266 and RPMI 8226 were used to determine the impact of camel whey protein (CWP). The CWP IC50 was calculated by MTT examination, while the flow cytometry analysis was used to investigate the chemotaxis responses of MM cells in relation to CXCL12 and the pro-apoptotic effect of CHP. MM cells were treated with CWP and Western blot analysis was used to determine the underlying molecular mechanisms. Dose and time based on the impact of CWP on the cell viability of MM cells with IC50 of 50 µg/ml, without affecting the viability of normal healthy PBMCs. CWP reduced chemotaxis of MM cells significantly from the CXC chemokine ligand 12 (CXCL12). Using Western blot analysis, we found that CWP decreased the activation of AKT, mTOR, PLCß3, NFαB and ERK, which was mechanistically mediated by CXCL12/CXCR4. In both U266 and RPMI 8226, CWP induced apoptosis by upregulating cytochrome C expression. In addition, CWP mediated the growth arrest of MM cells by robustly decreasing the expression of the anti-apoptotic Bcl-2 family members Bcl-2, Bcl-XL and Mcl-1. Conversely, the expression of pro-apoptotic Bcl-2 family members Bak, Bax and Bim was increased after treatment with CWP. Our data indicates CWP's therapeutic potential for MM cells.

8.
Saudi J Biol Sci ; 28(2): 1272-1282, 2021 Feb.
Article En | MEDLINE | ID: mdl-33613057

In an animal models, carbon tetrachloride (CCl4) is a carcinogenic agent that causes liver fibrosis. The current study aims to investigate whether induction in liver-fibrosis by CCl4 in the mouse model could promote the initiation of fibrosis in lymph node and spleen due to sustained increase of inflammatory signals and also aimed to clarify the protective therapeutic effects of propolis. The male mice (BALB/c) were categorized into three experimental sets and each group involved 15 mice. Control group falls into first group; group-II and group-III were injected with CCl4 to induce liver-fibrosis and oral supplementation with propolis was provided in group-III for 4-weeks. A major improvement with hepatic collagen and α-smooth muscle actin (α-SMA) production was aligned with the activation of liver fibrosis from CCl4. Mice treated with CCl4 exhibited collagen deposition towards liver sections, pathological alterations in spleen and lymph node architectures, and a significantly increase the circulation of both T&B cells in secondary lymphoid organs. Mechanically, the secondary lymphoid organs treated with CCl4 in mice exposed a positive growth in α-SMA and collagen expression, increased in proinflammatory cytokine levels and a significant increase in TGF-ß, NO and ROS levels. A manifest intensification in the expression of Nrf2, COX-2, and eNOS and upregulation of ASK1 and P38 phosphorylation. Interestingly, addition of propolis-treated CCl4 mice, substantially suppressed deposition of liver collagen, repealed inflammatory signals and resorted CCl4-mediated alterations in signaling cascades, thereby repairing the architectures of the secondary lymphoid organs. Our findings revealed benefits of propolis against fibrotic complications and enhancing secondary lymphoid organ architecture.

9.
Pathog Dis ; 79(3)2021 03 20.
Article En | MEDLINE | ID: mdl-33524139

The use of direct-acting antivirals (DAAs) therapy for the treatment of hepatitis C virus (HCV) results in a high-sustained virological response (SVR) and subsequently alters liver immunologic environment. However, hepatocellular carcinoma (HCC) may occur after DAAs treatment. We aimed to clarify changes of immune responses, PI3K/AKT and JAK/STAT signaling pathways in HCV-induced liver diseases and HCC following DAAs treatment. Four cohorts were classified as chronic HCV patients, HCV-related cirrhosis without HCC, HCV-related cirrhosis and HCC, and healthy control group. The patient groups were further divided into treated or untreated with DAAs with SVR12. Increased percentages of CD3, CD8 and CD4, decreased CD4/FoxP3/CD25, CD8/PD-1 and CD19/PDL-1 were found in DAAs-treated patients in the three HCV groups. Following DAAs therapy, the levels of ROS, IL-1ß, IL-6, IL-8 and TNF-α were significantly decreased in the three HCV groups. Treated HCV patients showed up regulation of p-AKT and p-STAT5 and down regulation of p-STAT3, HIF-1α and COX-2. In conclusion, DAAs enhance the immune response in chronic HCV and liver cirrhosis, hence our study is the first to show change in PI3K/AKT and JAK/STAT signaling pathways in different HCV-induced liver diseases after DAAs. In chronic HCV, DAAs have better impact on the immune response while in liver cirrhosis not all immune changes were prominent.


Cytokines/metabolism , Hepacivirus/immunology , Hepatitis C, Chronic/immunology , Hepatitis C, Chronic/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Adult , Aged , Aged, 80 and over , Antiviral Agents/therapeutic use , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/virology , Case-Control Studies , Egypt , Female , Gene Expression Regulation , Hepacivirus/drug effects , Hepatitis C, Chronic/complications , Hepatitis C, Chronic/virology , Humans , Immunity , Janus Kinases/metabolism , Liver Cirrhosis/immunology , Liver Cirrhosis/metabolism , Liver Cirrhosis/virology , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Liver Neoplasms/virology , Male , Middle Aged , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , STAT Transcription Factors/metabolism , Sustained Virologic Response , Young Adult
10.
Bioorg Chem ; 96: 103569, 2020 03.
Article En | MEDLINE | ID: mdl-31978680

A novel series of (Z)-3,5-disubstituted thiazolidine-2,4-diones 4-16 has been designed and synthesized. Preliminary screening of these compounds for their anti-breast cancer activity revealed that compounds 5, 7, and 9 possess the highest anti-cancer activities. The anti-tumor effects of compounds 5, 7, and 9 were evaluated against human breast cancer cell lines (MCF-7 and MDA-MB-231) and human breast cancer cells. They were also evaluated against normal non-cancerous breast cells, isolated from the same patients, to conclude about their use in a potential targeted therapy. Using MTT uptake method, these three compounds 5, 7, and 9 blunt the proliferation of these cancer cells in a dose-dependent manner with an IC50 of 1.27, 1.50 and 1.31 µM respectively. Interestingly, using flow cytometry analysis these three compounds significantly mediated apoptosis of human breast cancer cells without affecting the survival of normal non-cancerous breast cells that were isolated from the same patients. Mechanistically, these compounds blunt the proliferation of MCF-7 breast cancer cells by robustly decreasing the phosphorylation of AKT, mTOR and the expression of VEGF and HIF-1α. Most importantly, compounds 5, 7, and 9 without affecting the phosphorylation and expression of these crucial cellular factors in normal non-cancerous breast cells that were isolated from the same patients. Additionally, using Western blot analysis the three compounds significantly (P < 0.05) decreased the expression of the anti-apoptotic Bcl-2 members (Bcl-2, Bcl-XL and Mcl-1) and increased the expression of the pro-apoptotic Bcl-2 members (Bak, Bax and Bim) in MCF-7, MDA-MB-231 and human breast cancer cells making these breast cancer cells susceptible for apoptosis induction. Taken together, these data provide great evidences for the inhibitory activity of these compounds against breast cancer cells without affecting the normal breast cells.


Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Thiazolidines/chemical synthesis , Thiazolidines/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Female , Humans , MCF-7 Cells , Phosphorylation , Thiazolidines/therapeutic use
11.
Environ Sci Pollut Res Int ; 27(8): 8684-8695, 2020 Mar.
Article En | MEDLINE | ID: mdl-31904099

Exposure to ionizing radiation emitted from natural sources induces many health hazards. The response to ionizing radiation involves a number of mediators including inflammatory cytokines and free radicals which mediate immunosuppression. The present study aimed to monitor the impact of exposure to natural radioactive rocks from the Egyptian eastern desert on the primary immune organs. Therefore, three experimental groups (15 rats per group) were used: group I included the control non-irradiated rats; group II included rats that were exposed for 28 consecutive days to natural radioactive rocks from the Egyptian eastern desert (IR/R group); and group III (positive control group) included rats that were exposed to high dose of γ-rays (4 Gy/14 days for 28 days) (IR/γR group). We found that rats of both the IR/R and IR/γR groups exhibited pathological alterations in the architecture of the primary immune organs (bone marrow and thymus). Additionally, the levels of C-reactive protein (CRP), proinflammatory cytokines (IL-1ß, IL-6 and TNF-α), and reactive oxygen species (ROS) were significantly increased in the IR/R and IR/γR groups compared to the control group. Furthermore, rats from the IR/R and IR/γR groups exhibited significant increase in the activity of caspase-3 and caspase-9 and subsequently exhibited a significant increase in the apoptosis of PBMCs compared with the control group. Most importantly, apoptosis induction in the PBMCs was associated with increased expression of cyclin B1 and decreased expression of cyclin D1 and survivin compared with the control non-irradiated group. Taken together, our data demonstrated that consecutive exposure to natural radioactive rocks from the Egyptian eastern desert could dampen the immune response through damaging the architectures of the immune system and mediating serious health problems to the population inhabiting this region.


Apoptosis , Background Radiation , Radiation Exposure/analysis , Radiation, Ionizing , Animals , Egypt , Lymphocytes , Male , Rats , Reactive Oxygen Species
12.
Cell Physiol Biochem ; 53(2): 301-322, 2019.
Article En | MEDLINE | ID: mdl-31343125

BACKGROUND/AIMS: Propolis is one of the most promising natural products, exhibiting not only therapeutic but also prophylactic actions. Propolis has several biological and pharmacological properties, including hepatoprotective activities. The present study aimed to investigate the underlying molecular mechanisms of propolis against CCl4-mediated liver fibrosis. METHODS: Three groups of male BALB/c mice (n=15/ group) were used: group 1 comprised control mice; groups 2 and 3 were injected with CCl4 for the induction of liver fibrosis. Group 3 was then orally supplemented with propolis (100 mg/kg body weight) for four weeks. Different techniques were used to monitor the antifibrotic effects of propolis, including histopathological investigations using H&E, Masson's trichrome and Sirius red staining; Western blotting; flow cytometry; and ELISA. RESULTS: We found that the induction of liver fibrosis by CCl4 was associated with a significant increase in hepatic collagen and α-smooth muscle actin (α-SMA) expression. Moreover, CCl4-treated mice also exhibited histopathological alterations in the liver architecture. Additionally, the liver of CCl4-treated mice exhibited a marked increase in proinflammatory signals, such as increased expression of HSP70 and increased levels of proinflammatory cytokines and ROS. Mechanistically, the liver of CCl4-treated mice exhibited a significant increase in the phosphorylation of AKT and mTOR; upregulation of the expression of BAX and cytochrome C; downregulation of the expression of Bcl2; a significant elevation in the levels of TGF-ß followed by increased phosphorylation of SMAD2; and a marked increase in the expression of P53 and iNOS. Interestingly, oral supplementation of CCl4-treated mice with propolis significantly abolished hepatic collagen deposition, abrogated inflammatory signals and oxidative stress, restored CCl4-mediated alterations in the signaling cascades, and hence repaired the hepatic architecture nearly to the normal architecture observed in the control mice. CONCLUSION: Our findings revealed the therapeutic potential and the underlying mechanisms of propolis against liver fibrosis.


Apoptosis/drug effects , Liver Cirrhosis, Experimental/pathology , Propolis/pharmacology , Signal Transduction/drug effects , Animals , Carbon Tetrachloride/toxicity , Cytokines/metabolism , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Liver/metabolism , Liver/pathology , Liver Cirrhosis, Experimental/chemically induced , Liver Cirrhosis, Experimental/metabolism , Male , Mice , Mice, Inbred BALB C , Nitric Oxide Synthase Type II/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism , Smad2 Protein/metabolism , TOR Serine-Threonine Kinases/metabolism , Transforming Growth Factor beta/metabolism , Tumor Suppressor Protein p53/metabolism , bcl-2-Associated X Protein/metabolism
13.
Nutr Cancer ; 71(6): 1040-1054, 2019.
Article En | MEDLINE | ID: mdl-31017486

In the present study, we investigated the impact of camel whey protein (CWP) on the survival of primary acute myeloid leukemia (AML) cells that were isolated from 20 patients diagnosed with AML. We found that CWP induced apoptosis in the primary AML cells without affecting the normal PBMCs that were isolated from healthy individuals, as determined by PI/annexin V double staining followed by flow-cytometry analysis. Furthermore, we demonstrated that these primary AML cells exhibited aberrant phosphorylation of AKT, mTOR and STAT3. Treatment of AML cells with CWP mediated significant reduction in the phosphorylation of AKT, mTOR and STAT3. Additionally, we demonstrated that blockade of PI3K/AKT signaling pathway by wortmannin (WM) impaired the expression of Bcl-2 and BclXL in the primary AML cells, suggesting an essential cross-talk between PI3K and Bcl-2 that maintains the survival of AML cells. In this context, treatment of AML cells with CWP disrupted the PI3K/Bcl-2 cross-talk; significantly downregulated the expression of anti-apoptotic Bcl-2 family members Bcl-2 and BclXL; markedly upregulated the expression of the pro-apoptotic Bcl-2 family members Bak and Bax; and subsequently sensitized tumor cells to growth arrest. Our data revealed the therapeutic potential of CWP and the underlying mechanisms against leukemia.


Class I Phosphatidylinositol 3-Kinases/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukocytes, Mononuclear/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Whey Proteins/pharmacology , Adult , Animals , Apoptosis/drug effects , B-Lymphocytes/drug effects , B-Lymphocytes/pathology , Camelus , Case-Control Studies , Female , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , MCF-7 Cells , Male , T-Lymphocytes/drug effects , T-Lymphocytes/pathology , Tumor Cells, Cultured
14.
Biochem Cell Biol ; 97(5): 513-525, 2019 10.
Article En | MEDLINE | ID: mdl-30640511

The treatment of drug-resistant cancer is a clinical challenge, hence screening for novel anticancer drugs is critically important. In this study, we investigated the anti-tumor potential of three plant-derived flavone compounds: 3-hydroxy flavone (3-HF), 6-hydroxy flavone (6-HF), and 7-hydroxy flavone (7-HF), either alone or combined with silica nanoparticles (3-HF + NP, 6-HF + NP, and 7-HF + NP), on the human breast carcinoma cell lines MDA-MB-231 and MCF-7, as well as on non-tumorigenic normal breast epithelial cells (MCF-10). The IC50 values of these flavone compounds loaded with NP (flavones + NP) in these cell lines were determined to be 1.5 µg/mL without affecting the viability of normal MCF-10 cells. Additionally, using annexin V - propidium iodide double-staining followed by flow cytometry analysis, we found that the combination of flavones with NP significantly induced apoptosis in MCF-7 and MDA-MB-231 cancer cells. Furthermore, flavones + NP increased the expression of cytochrome c and caspase-9, mediating the growth arrest of these cancer cells. Most importantly, the combination of flavones with NP significantly abolished the expression of ATF-3, which is responsible for the proliferation and invasion of bone-metastatic breast cancer cells. Our data revealed the potential therapeutic effects of these flavones in fighting breast cancer cells, and provide the first insights concerning the underlying molecular mechanisms.


Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Flavones/pharmacology , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Flavones/chemistry , Humans , MCF-7 Cells , Structure-Activity Relationship
15.
Saudi J Biol Sci ; 25(8): 1609-1616, 2018 Dec.
Article En | MEDLINE | ID: mdl-30591777

Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease that has a mysterious relationship with malaria infection. The current study was designated to compare between the effect of the live and the gamma irradiated Plasmodium chabaudi infection on BWF1 lupus murine model. A total of 30 female BWF1 mice were randomly divided into three groups (10 mice/group) as follows: group (I) lupus group (lupus non infected); group (II) live malaria infected group (lupus + live malaria infection); and group (III) irradiated malaria-infected group (lupus + gamma irradiated malaria infection). Live P. chabaudi infection was accompanied with a decrease in survival rate and food consumption in comparison to the control group of mice while gamma irradiated P. chabaudi -infection was unable to do this effect. Additionally, live P. chabaudi infection was accompanied with an increased level of proteinuria and increased rate of immune complexes deposition in kidney. Moreover, infection with live, but not gamma-irradiated P. chabaudi was accompanied with an increase in nitric oxide (NO), hydrogen peroxide (H2O2), and malondialdehyde (MDA) levels in plasma of lupus mice. The levels of both total cholesterol and triglycerides in plasma of lupus mice after live P. chabaudi infection were obviously decreased in comparison to the control group. On the other hand, gamma-irradiated P. chabaudi infection resembled the control group. Our data revealed that infection of lupus mice with live but not gamma-irradiated P. chabaudi has several histological and biochemical effects.

16.
Iran J Basic Med Sci ; 21(9): 896-904, 2018 Sep.
Article En | MEDLINE | ID: mdl-30524689

OBJECTIVES: Heat stress (HS) is a catastrophic stressor that dampens immunity. The current study investigates the effect of dietary administration with camel whey protein (CWP) on apoptotic pathway caused by HS. MATERIALS AND METHODS: Forty-five male mice were divided into three groups: a control group; HS group; and HS mice that were orally supplemented with CWP (CWP-HS group). RESULTS: We found that reactive oxygen species (ROS), pro-inflammatory cytokines (IL-6), and C reactive protein (CRP) were elevated in the HS group along with a significant increase of caspase-9 and -3 and decrease of total antioxidant capacity (TAC). HS mice revealed impaired phosphorylation of Bcl-2 and Survivin, as well as increased expression of Bax, Bim and cytochrome C. Additionally, we observed an aberrant distribution of HSP-70 expressing lymphocytes in the spleen and thymus of HS mice. Moreover, histopathological examination showed alterations on the architectures of immune organs. In comparison with CWP-HS group, we found that CWP restored the levels of ROS, IL-6, TAC and CRP induced by HS. Furthermore, CWP restored the expression of Bcl-2/Bax, improved the histopathological changes in immune organs and HSP-70 distribution in the spleen and thymus. CONCLUSION: Our findings revealed the possible ameliorative role of CWP supplementation against damages induced by exposure to HS.

17.
Mol Immunol ; 103: 322-335, 2018 11.
Article En | MEDLINE | ID: mdl-30366166

Impaired wound healing is a serious complication of diabetes that negatively affects the patient's socioeconomic life. Multiple mechanisms contribute to impaired diabetic wound healing including deficient recruitment of wound macrophages/neutrophils and impaired neovascularization. Bee venom (BV) has been used as an anti-inflammatory agent for the treatment of several diseases. Nevertheless, the impacts of BV on the diabetic wound healing have been poorly studied. In the present study, we investigated the molecular mechanisms underlying BV treatment on diabetic wound healing in a type I diabetic mouse model. Three experimental groups were used: group 1, non-diabetic control mice; group 2, vehicle-diabetic mice; and group 3, BV-treated diabetic mice. We found that the diabetic mice exhibited impaired wound closure characterized by a significant decrease in collagen and ß-defensin-2 (BD-2) expression compared to control non-diabetic mice. The impairment of diabetic wound healing is attributed to increased ROS levels and abolished antioxidant enzymes activity in the wounded tissues. Additionally, wounded tissue in diabetic mice revealed aberrantly decreased levels of Ang-1 and Nrf2 (the agonist ligands of Tie-2) followed by a marked reduction in the phosphorylation of Tie2 and downstream signaling eNOS, AKT and ERK. Impaired diabetic wound healing was also characterized by a significant reduction in activities of total antioxidant enzymes followed by a marked reduction in the levels of CCL2, CCL3 and CXCL2; which led to impaired recruitment and functions of wound macrophages/neutrophils; and significant reduction in the expression of CD31, a marker for neovascularization and angiogenesis of the injured tissue. Interestingly, BV treatment significantly enhanced wound closure in diabetic mice by increasing collagen and BD-2 expression and restoring the levels of Ang-1 and Nrf2 and hence enhancing the Tie-2 downstream signaling. Most importantly, treatment of diabetic mice with BV significantly restored the activities of wounded tissue antioxidant enzymes and the levels of chemokines, and subsequently rescued wound macrophages from mitochondrial membrane potential-induced apoptosis. Our findings reveal the immune-enhancing effects of BV for improving healing process of diabetic wounds and provide the first insight concerning the underlying molecular mechanisms.


Apoptosis/drug effects , Bee Venoms/pharmacology , Diabetes Mellitus, Experimental/physiopathology , Macrophages/drug effects , Proteins/metabolism , Wound Healing/drug effects , Angiopoietin-1/metabolism , Animals , Cells, Cultured , Collagen/metabolism , Disease Models, Animal , Humans , Macrophages/metabolism , Male , Mice, Inbred BALB C , NF-E2-Related Factor 2/metabolism , Protective Agents/pharmacology , Receptor, TIE-2/metabolism , Signal Transduction/drug effects , Wound Healing/physiology , beta-Defensins/metabolism
18.
Food Funct ; 9(6): 3557, 2018 06 20.
Article En | MEDLINE | ID: mdl-29796471

Correction for 'Ameliorative role of camel whey protein and rosuvastatin on induced dyslipidemia in mice' by Nashwa Ahmed El-Shinnawy et al., Food Funct., 2018, 9, 1038-1047.

19.
Mol Reprod Dev ; 85(6): 505-518, 2018 06.
Article En | MEDLINE | ID: mdl-29683243

Elevation of scrotal temperature is one of the most important causes of impaired spermatogenesis and male infertility, but the exact mechanism remains controversial. The present study investigated the impact of camel whey protein (CWP) on the mechanisms of heat stress (HS)-mediated testicular damage in male mice. Exposure to HS was associated with significant increase in the testicular tissues' oxidative stress. Mechanistically, exposure to HS resulted in upregulation of P53 and Nrf2 expressions; downregulation of Bcl2 and PPAR-γ expressions; and induction of testicular Leydig cell hyperplasia. Because Leydig cells produce testosterone up on stimulation with Luteinizing hormone (LH), HS mice also exhibited significant reduction in the serum testosterone levels followed by significant reduction in the percentages of progressively motile sperm and higher percentages of immotile sperm, when compared with those of control mice. Interestingly, treatment of HS mice with CWP significantly restored the levels of ROS and the activities of antioxidant enzymes in the testicular tissues nearly to those observed in control mice. Furthermore, CWP supplemented HS mice exhibited complete restoration of Bcl2, P53, Nrf2, and PPAR-γ expressions; testicular Leydig cell distribution; significant higher levels of testosterone levels; and hence higher percentages of progressively motile sperm and lower percentages of immotile sperm as compared to HS mice. Our findings reveal the protective effects of CWP against testis injury and infertility induced by exposure to HS by rescuing functional Leydig cells. Additionally, the present study has shed light on the molecular mechanisms underlying improved testicular damage following CWP treatment.


Adaptor Proteins, Signal Transducing/metabolism , Camelus , Heat-Shock Response/drug effects , Infertility, Male/metabolism , Leydig Cells/metabolism , NF-E2-Related Factor 2/metabolism , PPAR gamma/metabolism , Phosphoproteins/metabolism , Scrotum/metabolism , Signal Transduction/drug effects , Whey Proteins/pharmacology , Animals , Cell Cycle Proteins , Infertility, Male/drug therapy , Infertility, Male/pathology , Leydig Cells/pathology , Male , Mice , Mice, Inbred BALB C , Scrotum/pathology , Sperm Motility/drug effects , Spermatozoa/metabolism , Spermatozoa/pathology , YAP-Signaling Proteins
20.
Bioorg Chem ; 78: 46-57, 2018 08.
Article En | MEDLINE | ID: mdl-29533214

Recent developments in the literature have demonstrated that curcumin exhibit antioxidant properties supporting its anti-inflammatory, chemopreventive and antitumoral activities against aggressive and recurrent cancers. Despite the valuable findings of curcumin against different cancer cells, the clinical use of curcumin in cancer treatment is limited due to its extremely low aqueous solubility and instability, which lead to poor in vivo bioavailability and limited therapeutic effects. We therefore focused in the present study to evaluate the anti-tumor potential of curcumin analogues on the human breast carcinoma cell lines MDA-MB-231 and MCF-7, as well as their effects on non-tumorigenic normal breast epithelial cells (MCF-10). The IC50 values of curcumin analogue J1 in these cancer cell lines were determined to be 5 ng/ml and 10 ng/ml, in MDA-MB-231 and MCF-7 cells respectively. Interestingly, at these concentrations, the J1 did not affect the viability of non-tumorigenic normal breast epithelial cells MCF-10. Furthermore, we found that J1 strongly induced growth arrest of these cancer cells by modulating the mitochondrial membrane potentials without significant effect on normal MCF-10 cells using JC-1 staining and flow cytometry analysis. Using annexin-V/PI double staining assay followed by flow cytometry analysis, we found that J1 robustly enhanced the induction of apoptosis by increasing the activity of caspases in MDA-MB-231 and MCF-7 cancer cells. In addition, treatment of breast cancer cells with J1 revealed that, in contrast to the expression of cyclin B1, this curcumin analogue vigorously decreased the expression of cyclin A, CDK2 and cyclin E and subsequently sensitized tumor cells to cell cycle arrest. Most importantly, the phosphorylation of AKT, mTOR and PKC-theta in J1-treated cancer cells was markedly decreased and hence affecting the survival of these cancer cells. Most interestingly, J1-treated cancer cells exhibited a significant inhibition in the activation of RhoA followed by reduction in actin polymerization and cytoskeletal rearrangement in response to CXCL12. Our data reveal the therapeutic potential of the curcumin analogue J1 and the underlying mechanisms to fight breast cancer cells.


Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Curcumin/analogs & derivatives , Curcumin/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase C-theta/antagonists & inhibitors , TOR Serine-Threonine Kinases/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Molecular Structure , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase C-theta/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship , TOR Serine-Threonine Kinases/metabolism , Tumor Cells, Cultured
...