Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953167

RESUMEN

The ability to deliver large transgenes to a single genomic sequence with high efficiency would accelerate biomedical interventions. Current methods suffer from low insertion efficiency and most rely on undesired double-strand DNA breaks. Serine integrases catalyze the insertion of large DNA cargos at attachment (att) sites. By targeting att sites to the genome using technologies such as prime editing, integrases can target safe loci while avoiding double-strand breaks. We developed a method of phage-assisted continuous evolution we call IntePACE, that we used to rapidly perform hundreds of rounds of mutagenesis to systematically improve activity of PhiC31 and Bxb1 serine integrases. Novel hyperactive mutants were generated by combining synergistic mutations resulting in integration of a multi-gene cargo at rates as high as 80% of target chromosomes. Hyperactive integrases inserted a 15.7 kb therapeutic DNA cargo containing von Willebrand Factor. This technology could accelerate gene delivery therapeutics and our directed evolution strategy can easily be adapted to improve novel integrases from nature.

2.
bioRxiv ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38915697

RESUMEN

The ability to deliver large transgenes to a single genomic sequence with high efficiency would accelerate biomedical interventions. Current methods suffer from low insertion efficiency and most rely on undesired double-strand DNA breaks. Serine integrases catalyze the insertion of large DNA cargos at attachment (att) sites. By targeting att sites to the genome using technologies such as prime editing, integrases can target safe loci while avoiding double-strand breaks. We developed a method of phage-assisted continuous evolution we call IntePACE, that we used to rapidly perform hundreds of rounds of mutagenesis to systematically improve activity of PhiC31 and Bxb1 serine integrases. Novel hyperactive mutants were generated by combining synergistic mutations resulting in integration of a multi-gene cargo at rates as high as 80% of target chromosomes. Hyperactive integrases inserted a 15.7 kb therapeutic DNA cargo containing Von Willebrand Factor. This technology could accelerate gene delivery therapeutics and our directed evolution strategy can easily be adapted to improve novel integrases from nature.

3.
Curr Opin Chem Biol ; 69: 102160, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35660248

RESUMEN

Antibiotics are essential weapons in our fight against infectious disease, yet the consequences of broad-spectrum antibiotic use on microbiome stability and pathogen resistance are prompting investigations into more selective alternatives. Echoing the advent of precision medicine in oncology, precision antibiotics with focused activities are emerging as a means of addressing infections without damaging microbiomes or incentivizing resistance. Historically, antibiotic design principles have been gleaned from Nature, and reinvestigation of overlooked antibacterials is now providing scaffolds and targets for the design of pathogen-specific drugs. In this perspective, we summarize the biosynthetic and antibacterial mechanisms used to access these activities, and discuss how such strategies may be co-opted through engineering approaches to afford precision antibiotics.


Asunto(s)
Antibacterianos , Microbiota , Antibacterianos/farmacología
4.
Nat Commun ; 12(1): 5706, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588441

RESUMEN

Genetic code expansion technologies supplement the natural codon repertoire with assignable variants in vivo, but are often limited by heterologous translational components and low suppression efficiencies. Here, we explore engineered Escherichia coli tRNAs supporting quadruplet codon translation by first developing a library-cross-library selection to nominate quadruplet codon-anticodon pairs. We extend our findings using a phage-assisted continuous evolution strategy for quadruplet-decoding tRNA evolution (qtRNA-PACE) that improved quadruplet codon translation efficiencies up to 80-fold. Evolved qtRNAs appear to maintain codon-anticodon base pairing, are typically aminoacylated by their cognate tRNA synthetases, and enable processive translation of adjacent quadruplet codons. Using these components, we showcase the multiplexed decoding of up to four unique quadruplet codons by their corresponding qtRNAs in a single reporter. Cumulatively, our findings highlight how E. coli tRNAs can be engineered, evolved, and combined to decode quadruplet codons, portending future developments towards an exclusively quadruplet codon translation system.


Asunto(s)
Anticodón/metabolismo , Codón/metabolismo , Evolución Molecular Dirigida , Escherichia coli/genética , ARN de Transferencia/genética , Aminoácidos/genética , Aminoacil-ARNt Sintetasas/metabolismo , Clonación Molecular , Escherichia coli/enzimología , Proteínas de Escherichia coli/biosíntesis , Biosíntesis de Proteínas , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/metabolismo
5.
Nat Commun ; 12(1): 5638, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34561441

RESUMEN

In bacteria, ribosome kinetics are considered rate-limiting for protein synthesis and cell growth. Enhanced ribosome kinetics may augment bacterial growth and biomanufacturing through improvements to overall protein yield, but whether this can be achieved by ribosome-specific modifications remains unknown. Here, we evolve 16S ribosomal RNAs (rRNAs) from Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae towards enhanced protein synthesis rates. We find that rRNA sequence origin significantly impacted evolutionary trajectory and generated rRNA mutants with augmented protein synthesis rates in both natural and engineered contexts, including the incorporation of noncanonical amino acids. Moreover, discovered consensus mutations can be ported onto phylogenetically divergent rRNAs, imparting improved translational activities. Finally, we show that increased translation rates in vivo coincide with only moderately reduced translational fidelity, but do not enhance bacterial population growth. Together, these findings provide a versatile platform for development of unnatural ribosomal functions in vivo.


Asunto(s)
Biosíntesis de Proteínas , ARN Ribosómico/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Secuencia de Bases , Evolución Molecular Dirigida/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Espectrometría de Masas/métodos , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Proteoma/metabolismo , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Proteínas Ribosómicas/genética , Ribosomas/genética
6.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34413202

RESUMEN

Inaccurate expression of the genetic code, also known as mistranslation, is an emerging paradigm in microbial studies. Growing evidence suggests that many microbial pathogens can deliberately mistranslate their genetic code to help invade a host or evade host immune responses. However, discovering different capacities for deliberate mistranslation remains a challenge because each group of pathogens typically employs a unique mistranslation mechanism. In this study, we address this problem by studying duplicated genes of aminoacyl-transfer RNA (tRNA) synthetases. Using bacterial prolyl-tRNA synthetase (ProRS) genes as an example, we identify an anomalous ProRS isoform, ProRSx, and a corresponding tRNA, tRNAProA, that are predominately found in plant pathogens from Streptomyces species. We then show that tRNAProA has an unusual hybrid structure that allows this tRNA to mistranslate alanine codons as proline. Finally, we provide biochemical, genetic, and mass spectrometric evidence that cells which express ProRSx and tRNAProA can translate GCU alanine codons as both alanine and proline. This dual use of alanine codons creates a hidden proteome diversity due to stochastic Ala→Pro mutations in protein sequences. Thus, we show that important plant pathogens are equipped with a tool to alter the identity of their sense codons. This finding reveals the initial example of a natural tRNA synthetase/tRNA pair for dedicated mistranslation of sense codons.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Codón , Escherichia coli/metabolismo , Código Genético , Biosíntesis de Proteínas , Aminoacil-ARN de Transferencia/metabolismo , Streptomyces/metabolismo , Alanina/genética , Alanina/metabolismo , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Prolina/genética , Prolina/metabolismo , Aminoacil-ARN de Transferencia/genética , Homología de Secuencia , Streptomyces/genética , Streptomyces/crecimiento & desarrollo , Especificidad por Sustrato
7.
Science ; 371(6531)2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33602825

RESUMEN

Although metabolism plays an active role in antibiotic lethality, antibiotic resistance is generally associated with drug target modification, enzymatic inactivation, and/or transport rather than metabolic processes. Evolution experiments of Escherichia coli rely on growth-dependent selection, which may provide a limited view of the antibiotic resistance landscape. We sequenced and analyzed E. coli adapted to representative antibiotics at increasingly heightened metabolic states. This revealed various underappreciated noncanonical genes, such as those related to central carbon and energy metabolism, which are implicated in antibiotic resistance. These metabolic alterations lead to lower basal respiration, which prevents antibiotic-mediated induction of tricarboxylic acid cycle activity, thus avoiding metabolic toxicity and minimizing drug lethality. Several of the identified metabolism-specific mutations are overrepresented in the genomes of >3500 clinical E. coli pathogens, indicating clinical relevance.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Genes Bacterianos , Mutación , Adaptación Fisiológica , Carbenicilina/farmacología , Ciprofloxacina/farmacología , Ciclo del Ácido Cítrico/genética , Evolución Molecular Dirigida , Metabolismo Energético/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Técnicas de Silenciamiento del Gen , Genoma Bacteriano , Complejo Cetoglutarato Deshidrogenasa/genética , Pruebas de Sensibilidad Microbiana , Análisis de Secuencia de ADN , Estreptomicina/farmacología
8.
Nat Commun ; 12(1): 599, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500394

RESUMEN

The ribosome represents a promising avenue for synthetic biology, but its complexity and essentiality have hindered significant engineering efforts. Heterologous ribosomes, comprising rRNAs and r-proteins derived from different microorganisms, may offer opportunities for novel translational functions. Such heterologous ribosomes have previously been evaluated in E. coli via complementation of a genomic ribosome deficiency, but this method fails to guide the engineering of refractory ribosomes. Here, we implement orthogonal ribosome binding site (RBS):antiRBS pairs, in which engineered ribosomes are directed to researcher-defined transcripts, to inform requirements for heterologous ribosome functionality. We discover that optimized rRNA processing and supplementation with cognate r-proteins enhances heterologous ribosome function for rRNAs derived from organisms with ≥76.1% 16S rRNA identity to E. coli. Additionally, some heterologous ribosomes undergo reduced subunit exchange with E. coli-derived subunits. Cumulatively, this work provides a general framework for heterologous ribosome engineering in living cells.


Asunto(s)
Escherichia coli/genética , Biosíntesis de Proteínas/genética , Proteínas Ribosómicas/genética , Ribosomas/genética , Biología Sintética/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Filogenia , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Operón de ARNr/genética
9.
Trends Biotechnol ; 39(1): 59-71, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32586633

RESUMEN

Synthetic biology strives to reliably control cellular behavior, typically in the form of user-designed interactions of biological components to produce a predetermined output. Engineered circuit components are frequently derived from natural sources and are therefore often hampered by inadvertent interactions with host machinery, most notably within the host central dogma. Reliable and predictable gene circuits require the targeted reduction or elimination of these undesirable interactions to mitigate negative consequences on host fitness and develop context-independent bioactivities. Here, we review recent advances in biological orthogonalization, namely the insulation of researcher-dictated bioactivities from host processes, with a focus on systematic developments that may culminate in the creation of an orthogonal central dogma and novel cellular functions.


Asunto(s)
Redes Reguladoras de Genes , Biología Sintética , Animales , Humanos , Modelos Teóricos , Biología Sintética/tendencias
10.
Nat Commun ; 11(1): 4202, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32826900

RESUMEN

Antibiotic biosynthetic gene clusters (BGCs) produce bioactive metabolites that impart a fitness advantage to their producer, providing a mechanism for natural selection. This selection drives antibiotic evolution and adapts BGCs for expression in different organisms, potentially providing clues to improve heterologous expression of antibiotics. Here, we use phage-assisted continuous evolution (PACE) to achieve bioactivity-dependent adaptation of the BGC for the antibiotic bicyclomycin (BCM), facilitating improved production in a heterologous host. This proof-of-principle study demonstrates that features of natural bioactivity-dependent evolution can be engineered to access unforeseen routes of improving metabolic pathways and product yields.


Asunto(s)
Antibacterianos/biosíntesis , Vías Biosintéticas/genética , Familia de Multigenes , Productos Biológicos/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Clonación Molecular , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Ingeniería Metabólica , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo
12.
Cell ; 180(4): 688-702.e13, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32084340

RESUMEN

Due to the rapid emergence of antibiotic-resistant bacteria, there is a growing need to discover new antibiotics. To address this challenge, we trained a deep neural network capable of predicting molecules with antibacterial activity. We performed predictions on multiple chemical libraries and discovered a molecule from the Drug Repurposing Hub-halicin-that is structurally divergent from conventional antibiotics and displays bactericidal activity against a wide phylogenetic spectrum of pathogens including Mycobacterium tuberculosis and carbapenem-resistant Enterobacteriaceae. Halicin also effectively treated Clostridioides difficile and pan-resistant Acinetobacter baumannii infections in murine models. Additionally, from a discrete set of 23 empirically tested predictions from >107 million molecules curated from the ZINC15 database, our model identified eight antibacterial compounds that are structurally distant from known antibiotics. This work highlights the utility of deep learning approaches to expand our antibiotic arsenal through the discovery of structurally distinct antibacterial molecules.


Asunto(s)
Antibacterianos/farmacología , Descubrimiento de Drogas/métodos , Aprendizaje Automático , Tiadiazoles/farmacología , Acinetobacter baumannii/efectos de los fármacos , Animales , Antibacterianos/química , Quimioinformática/métodos , Clostridioides difficile/efectos de los fármacos , Bases de Datos de Compuestos Químicos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Tiadiazoles/química
13.
Nat Chem Biol ; 14(10): 972-980, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30127387

RESUMEN

We report the development of soluble expression phage-assisted continuous evolution (SE-PACE), a system for rapidly evolving proteins with increased soluble expression. Through use of a PACE-compatible AND gate that uses a split-intein pIII, SE-PACE enables two simultaneous positive selections to evolve proteins with improved expression while maintaining their desired activities. In as little as three days, SE-PACE evolved several antibody fragments with >5-fold improvement in expression yield while retaining binding activity. We also developed an activity-independent form of SE-PACE to correct folding-defective variants of maltose-binding protein (MBP) and to evolve variants of the eukaryotic cytidine deaminase APOBEC1 with improved expression properties. These evolved APOBEC1 variants were found to improve the expression and apparent activity of Cas9-derived base editors when used in place of the wild-type cytidine deaminase. Together, these results suggest that SE-PACE can be applied to a wide variety of proteins to rapidly improve their soluble expression.


Asunto(s)
Bacteriófagos , Evolución Molecular Dirigida , Fragmentos de Inmunoglobulinas/química , Proteínas de Unión a Maltosa/química , Desaminasas APOBEC-1/química , Citidina Desaminasa/química , Escherichia coli/metabolismo , Genómica , Células HEK293 , Humanos , Inteínas , Regiones Promotoras Genéticas , Pliegue de Proteína , Empalme de Proteína , Rifampin/química
14.
Nature ; 559(7714): E8, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29720650

RESUMEN

In this Article, owing to an error during the production process, in Fig. 1a, the dark blue and light blue wedges were incorrectly labelled as 'G•C → T•A' and 'G•C → A•T', instead of 'C•G → T•A' and 'C•G → A•T', respectively. Fig. 1 has been corrected online.

15.
ACS Chem Biol ; 13(2): 383-388, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28957631

RESUMEN

Genome editing methods have commonly relied on the initial introduction of double-stranded DNA breaks (DSBs), resulting in stochastic insertions, deletions, and translocations at the target genomic locus. To achieve gene correction, these methods typically require the introduction of exogenous DNA repair templates and low-efficiency homologous recombination processes. In this review, we describe alternative, mechanistically motivated strategies to perform chemistry on the genome of unmodified cells without introducing DSBs. One such strategy, base editing, uses chemical and biological insights to directly and permanently convert one target base pair to another. Despite its recent introduction, base editing has already enabled a number of new capabilities and applications in the genome editing community. We summarize these advances here and discuss the new possibilities that this method has unveiled, concluding with a brief analysis of future prospects for genome and transcriptome editing without double-stranded DNA cleavage.


Asunto(s)
Roturas del ADN de Doble Cadena , Edición Génica/métodos , Genoma , Animales , Bacterias/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Citidina Desaminasa/genética , ADN/genética , Endonucleasas/genética , Mutagénesis Sitio-Dirigida/métodos , Plantas/genética , ARN Guía de Kinetoplastida/genética , Uracil-ADN Glicosidasa/antagonistas & inhibidores , Uracil-ADN Glicosidasa/genética
16.
Curr Opin Chem Biol ; 41: 50-60, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29096324

RESUMEN

Genetic variation fuels Darwinian evolution, yet spontaneous mutation rates are maintained at low levels to ensure cellular viability. Low mutation rates preclude the exhaustive exploration of sequence space for protein evolution and genome engineering applications, prompting scientists to develop methods for efficient and targeted diversification of nucleic acid sequences. Directed evolution of biomolecules relies upon the generation of unbiased genetic diversity to discover variants with desirable properties, whereas genome-engineering applications require selective modifications on a genomic scale with minimal off-targets. Here, we review the current toolkit of mutagenesis strategies employed in directed evolution and genome engineering. These state-of-the-art methods enable facile modifications and improvements of single genes, multicomponent pathways, and whole genomes for basic and applied research, while simultaneously paving the way for genome editing therapeutic interventions.


Asunto(s)
Ingeniería de Proteínas/métodos , Animales , Evolución Molecular Dirigida , Genómica , Humanos , Mutagénesis
17.
Nature ; 551(7681): 464-471, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29160308

RESUMEN

The spontaneous deamination of cytosine is a major source of transitions from C•G to T•A base pairs, which account for half of known pathogenic point mutations in humans. The ability to efficiently convert targeted A•T base pairs to G•C could therefore advance the study and treatment of genetic diseases. The deamination of adenine yields inosine, which is treated as guanine by polymerases, but no enzymes are known to deaminate adenine in DNA. Here we describe adenine base editors (ABEs) that mediate the conversion of A•T to G•C in genomic DNA. We evolved a transfer RNA adenosine deaminase to operate on DNA when fused to a catalytically impaired CRISPR-Cas9 mutant. Extensive directed evolution and protein engineering resulted in seventh-generation ABEs that convert targeted A•T base pairs efficiently to G•C (approximately 50% efficiency in human cells) with high product purity (typically at least 99.9%) and low rates of indels (typically no more than 0.1%). ABEs introduce point mutations more efficiently and cleanly, and with less off-target genome modification, than a current Cas9 nuclease-based method, and can install disease-correcting or disease-suppressing mutations in human cells. Together with previous base editors, ABEs enable the direct, programmable introduction of all four transition mutations without double-stranded DNA cleavage.


Asunto(s)
Emparejamiento Base/genética , Edición Génica/métodos , Genoma Humano/genética , Adenosina Desaminasa/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Línea Celular Tumoral , ADN/genética , ADN/metabolismo , División del ADN , Células HEK293 , Humanos , Modelos Moleculares , Polimorfismo de Nucleótido Simple/genética
18.
Sci Adv ; 3(8): eaao4774, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28875174

RESUMEN

We recently developed base editing, the programmable conversion of target C:G base pairs to T:A without inducing double-stranded DNA breaks (DSBs) or requiring homology-directed repair using engineered fusions of Cas9 variants and cytidine deaminases. Over the past year, the third-generation base editor (BE3) and related technologies have been successfully used by many researchers in a wide range of organisms. The product distribution of base editing-the frequency with which the target C:G is converted to mixtures of undesired by-products, along with the desired T:A product-varies in a target site-dependent manner. We characterize determinants of base editing outcomes in human cells and establish that the formation of undesired products is dependent on uracil N-glycosylase (UNG) and is more likely to occur at target sites containing only a single C within the base editing activity window. We engineered CDA1-BE3 and AID-BE3, which use cytidine deaminase homologs that increase base editing efficiency for some sequences. On the basis of these observations, we engineered fourth-generation base editors (BE4 and SaBE4) that increase the efficiency of C:G to T:A base editing by approximately 50%, while halving the frequency of undesired by-products compared to BE3. Fusing BE3, BE4, SaBE3, or SaBE4 to Gam, a bacteriophage Mu protein that binds DSBs greatly reduces indel formation during base editing, in most cases to below 1.5%, and further improves product purity. BE4, SaBE4, BE4-Gam, and SaBE4-Gam represent the state of the art in C:G-to-T:A base editing, and we recommend their use in future efforts.


Asunto(s)
Bacteriófago mu/fisiología , Emparejamiento Base , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Virales/metabolismo , Línea Celular , Activación Enzimática , Frecuencia de los Genes , Orden Génico , Humanos , Mutación INDEL , Uracil-ADN Glicosidasa/metabolismo
19.
Cell ; 169(3): 559, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28431253
20.
Cell ; 168(1-2): 20-36, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-27866654

RESUMEN

The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances in the life sciences that have grown from the ability to edit genomes within living cells. In this Review, we summarize CRISPR-based technologies that enable mammalian genome editing and their various applications. We describe recent developments that extend the generality, DNA specificity, product selectivity, and fundamental capabilities of natural CRISPR systems, and we highlight some of the remarkable advancements in basic research, biotechnology, and therapeutics science that these developments have facilitated.


Asunto(s)
Edición Génica/métodos , Animales , Sistemas CRISPR-Cas , Células Cultivadas , Enfermedad/genética , Modelos Animales de Enfermedad , Epigenómica/métodos , Terapia Genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...