Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 61(20): 5972-5979, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-36255837

RESUMEN

Thermally tunable extraordinary terahertz transmission in a hybrid metal-vanadium dioxide (VO2) metasurface is numerically demonstrated. The metasurface consists of a metal sheet perforated by square loops, while the loops are connected with strips of VO2. The frequency and amplitude of the transmission resonance are modulated by controlling the conductivity of VO2. For a y-polarized incident field, the resonance transmission peak redshifts from 0.88 to 0.81 THz upon insulator-to-metallic phase transition of VO2. For an x-polarized incident field, the transmission resonance at 0.81 THz is observed in the insulator phase. However, in the metallic phase of VO2, the electromagnetic field is effectively reflected in the 0.5-1.1 THz range with a transmission level lower than 0.14. The proposed metasurface can be utilized as a terahertz modulator, reconfigurable filter, or switch.

2.
Appl Opt ; 60(25): 7828-7833, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34613258

RESUMEN

Designing reliable and compact integrated biosensors with high sensitivity is crucial for lab-on-a-chip applications. We present a bandpass optical filter, as a label-free biosensor, based on a hybrid slot waveguide on the silicon-on-insulator platform. The designed hybrid waveguide consists of a narrow silicon strip, a gap, and a metallic Bragg grating with a phase-shifted cavity. The hybrid waveguide is coupled to a conventional silicon strip waveguide with a taper. The effect of geometrical parameters on the performance of the filter is investigated by 3D finite-difference time-domain simulations. The proposed hybrid waveguide has potential for sensing applications since the optical field is pulled into the gap and outside of the silicon core, thus increasing the modal overlap with the sensing region. This biosensor offers a sensitivity of 270 nm/RIU, while it only occupies a compact footprint of 1.03µm×17.6µm.


Asunto(s)
Técnicas Biosensibles/instrumentación , Dispositivos Laboratorio en un Chip , Técnicas Biosensibles/métodos , Diseño de Equipo , Filtración/instrumentación , Silicio , Resonancia por Plasmón de Superficie
3.
Appl Opt ; 60(10): 2803-2810, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33798155

RESUMEN

Subwavelength engineering and utilizing phase-change materials with large contrast in their optical properties have become powerful design tools for integrated silicon photonics. Reversible phase-transition of phase-change materials such as Ge2Sb2Te5 (GST) provide a new degree of freedom and open up the possibility of adding new functionalities to the designed devices. We present an optical filter based on a silicon subwavelength grating (SWG) waveguide evanescently coupled to phase-change material loading segments arranged periodically around the SWG core. The effect of the GST loading segments' geometry and their distance from the SWG core on the filter's central wavelength and bandwidth are studied with three-dimensional finite-difference time-domain simulations. The employment of GST in the structure adds a switching functionality with an extinction ratio of 28.8 dB. We also examine the possibility of using the proposed structure as a reconfigurable filter by controlling the partial crystallization of the GST offering a blueshift of more than 4 nm.

4.
Appl Opt ; 59(17): 5269-5275, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32543549

RESUMEN

The rapid development of photonic integrated circuits demands the design of efficient and compact waveguide devices such as waveguide tapers and crossings. Some components in the silicon nitride (SiN) waveguide platform are superior to their counterparts in the silicon waveguide platform. Designing a compact SiN waveguide taper and crossing is crucial to reduce the size of SiN photonic components. In this paper, we utilize the focusing property of the Luneburg lens to design an SiN taper connecting a 10-µm-wide waveguide to a 1-µm-wide waveguide. Three-dimensional full-wave simulations indicate that the designed 13-µm-long taper has an average transmission efficiency of 92% in the wavelength range of 1500-1600 nm. We also present an in-plane SiN waveguide crossing based on the imaging property of the square Maxwell's fisheye lens designed with quasi-conformal transformation optics. The designed waveguide crossing occupies a compact footprint of 5.65µm×5.65µm, while its average insertion loss is 0.46 dB in the bandwidth of 1500-1600 nm. To the best our knowledge, the designed SiN waveguide taper and crossing have the smallest footprints to date.

5.
Appl Opt ; 58(17): 4647-4653, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31251284

RESUMEN

Mode-division multiplexing (MDM) is an emerging large-capacity data communication technology utilizing orthogonal guiding modes as independent data streams. One of the challenges of multimode waveguide routing in MDM systems is decreasing the mode leakage of waveguide crossings. In this article, a square Maxwell's fish-eye lens as a waveguide crossing medium based on quasiconformal transformation optics is designed and implemented on a silicon-on-insulator platform. Two approaches were taken to realize the designed lens: graded photonic crystal and varying the thickness of the silicon slab waveguide. Three-dimensional numerical simulations show that the designed multimode waveguide crossing has an ultrawide bandwidth from 1260 to 1675 nm with a compact footprint of only 3.77×3.77 µm2. For the first three transverse electric modes (TE0, TE1, and TE2), the designed waveguide crossing exhibits an average insertion loss of 0.24, 0.55, and 0.45 dB; a crosstalk of less than -72, -61, and -27 dB; and a maximum return loss of 54, 53, and 30 dB, respectively. The designed waveguide crossing supports low-distortion pulse transmission with a high fidelity factor of 0.9857. Furthermore, the proposed method can be expanded to design waveguide crossings with an even higher number of supporting modes by increasing the size of the lens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...