Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(2): 105, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302438

RESUMEN

Aconitate decarboxylase 1 (ACOD1) is the enzyme synthesizing itaconate, an immuno-regulatory metabolite tuning host-pathogen interactions. Such functions are achieved by affecting metabolic pathways regulating inflammation and microbe survival. However, at the whole-body level, metabolic roles of itaconate remain largely unresolved. By using multiomics-integrated approaches, here we show that ACOD1 responds to high-fat diet consumption in mice by promoting gut microbiota alterations supporting metabolic disease. Genetic disruption of itaconate biosynthesis protects mice against obesity, alterations in glucose homeostasis and liver metabolic dysfunctions by decreasing meta-inflammatory responses to dietary lipid overload. Mechanistically, fecal metagenomics and microbiota transplantation experiments demonstrate such effects are dependent on an amelioration of the intestinal ecosystem composition, skewed by high-fat diet feeding towards obesogenic phenotype. In particular, unbiased fecal microbiota profiling and axenic culture experiments point towards a primary role for itaconate in inhibiting growth of Bacteroidaceae and Bacteroides, family and genus of Bacteroidetes phylum, the major gut microbial taxon associated with metabolic health. Specularly to the effects imposed by Acod1 deficiency on fecal microbiota, oral itaconate consumption enhances diet-induced gut dysbiosis and associated obesogenic responses in mice. Unveiling an unrecognized role of itaconate, either endogenously produced or exogenously administered, in supporting microbiota alterations underlying diet-induced obesity in mice, our study points ACOD1 as a target against inflammatory consequences of overnutrition.


Asunto(s)
Microbioma Gastrointestinal , Succinatos , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Obesidad/metabolismo
2.
BMC Biol ; 21(1): 256, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37953247

RESUMEN

BACKGROUND: Traditionally, in biomedical animal research, laboratory rodents are individually examined in test apparatuses outside of their home cages at selected time points. However, the outcome of such tests can be influenced by various factors and valuable information may be missed when the animals are only monitored for short periods. These issues can be overcome by longitudinally monitoring mice and rats in their home cages. To shed light on the development of home cage monitoring (HCM) and the current state-of-the-art, a systematic review was carried out on 521 publications retrieved through PubMed and Web of Science. RESULTS: Both the absolute (~ × 26) and relative (~ × 7) number of HCM-related publications increased from 1974 to 2020. There was a clear bias towards males and individually housed animals, but during the past decade (2011-2020), an increasing number of studies used both sexes and group housing. In most studies, animals were kept for short (up to 4 weeks) time periods in the HCM systems; intermediate time periods (4-12 weeks) increased in frequency in the years between 2011 and 2020. Before the 2000s, HCM techniques were predominantly applied for less than 12 h, while 24-h measurements have been more frequent since the 2000s. The systematic review demonstrated that manual monitoring is decreasing in relation to automatic techniques but still relevant. Until (and including) the 1990s, most techniques were applied manually but have been progressively replaced by automation since the 2000s. Independent of the year of publication, the main behavioral parameters measured were locomotor activity, feeding, and social behaviors; the main physiological parameters were heart rate and electrocardiography. External appearance-related parameters were rarely examined in the home cages. Due to technological progress and application of artificial intelligence, more refined and detailed behavioral parameters have been investigated in the home cage more recently. CONCLUSIONS: Over the period covered in this study, techniques for HCM of mice and rats have improved considerably. This development is ongoing and further progress as well as validation of HCM systems will extend the applications to allow for continuous, longitudinal, non-invasive monitoring of an increasing range of parameters in group-housed small rodents in their home cages.


Asunto(s)
Inteligencia Artificial , Conducta Animal , Masculino , Femenino , Ratones , Animales , Ratas , Conducta Animal/fisiología , Conducta Social , Frecuencia Cardíaca/fisiología , Animales Domésticos
3.
EMBO Rep ; 22(12): e53824, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34734666

RESUMEN

Academic Core Facilities are optimally situated to improve the quality of preclinical research by implementing quality control measures and offering these to their users.

4.
Commun Biol ; 4(1): 732, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127787

RESUMEN

The central amygdala (CE) emerges as a critical node for affective processing. However, how CE local circuitry interacts with brain wide affective states is yet uncharted. Using basic nociception as proxy, we find that gene expression suggests diverging roles of the two major CE neuronal populations, protein kinase C δ-expressing (PKCδ+) and somatostatin-expressing (SST+) cells. Optogenetic (o)fMRI demonstrates that PKCδ+/SST+ circuits engage specific separable functional subnetworks to modulate global brain dynamics by a differential bottom-up vs. top-down hierarchical mesoscale mechanism. This diverging modulation impacts on nocifensive behavior and may underly CE control of affective processing.


Asunto(s)
Afecto/fisiología , Amígdala del Cerebelo/fisiología , Red Nerviosa/fisiología , Nocicepción/fisiología , Amígdala del Cerebelo/citología , Animales , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética/métodos , Proteína Quinasa C-delta/metabolismo , Proteína Quinasa C-delta/fisiología , Somatostatina/metabolismo , Somatostatina/fisiología
5.
iScience ; 23(5): 101078, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32361506

RESUMEN

Early in brain development, impaired neuronal signaling during time-sensitive windows triggers the onset of neurodevelopmental disorders. GABA, through its depolarizing and excitatory actions, drives early developmental events including neuronal circuit formation and refinement. BDNF/TrkB signaling cooperates with GABA actions. How these developmental processes influence the formation of neural circuits and affect adult brain function is unknown. Here, we show that early deletion of Ntrk2/Trkb from immature mouse hippocampal dentate granule cells (DGCs) affects the integration and maturation of newly formed DGCs in the hippocampal circuitry and drives a premature shift from depolarizing to hyperpolarizing GABAergic actions in the target of DGCs, the CA3 principal cells of the hippocampus, by reducing the expression of the cation-chloride importer Nkcc1. These changes lead to the disruption of early synchronized neuronal activity at the network level and impaired morphological maturation of CA3 pyramidal neurons, ultimately contributing to altered adult hippocampal synaptic plasticity and cognitive processes.

6.
Nat Neurosci ; 21(7): 952-962, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29950668

RESUMEN

Functional neuroanatomy of Pavlovian fear has identified neuronal circuits and synapses associating conditioned stimuli with aversive events. Hebbian plasticity within these networks requires additional reinforcement to store particularly salient experiences into long-term memory. Here we have identified a circuit that reciprocally connects the ventral periaqueductal gray and dorsal raphe region with the central amygdala and that gates fear learning. We found that ventral periaqueductal gray and dorsal raphe dopaminergic (vPdRD) neurons encode a positive prediction error in response to unpredicted shocks and may reshape intra-amygdala connectivity via a dopamine-dependent form of long-term potentiation. Negative feedback from the central amygdala to vPdRD neurons might limit reinforcement to events that have not been predicted. These findings add a new module to the midbrain dopaminergic circuit architecture underlying associative reinforcement learning and identify vPdRD neurons as a critical component of Pavlovian fear conditioning. We propose that dysregulation of vPdRD neuronal activity may contribute to fear-related psychiatric disorders.


Asunto(s)
Aprendizaje por Asociación/fisiología , Neuronas Dopaminérgicas/fisiología , Miedo/fisiología , Tegmento Mesencefálico/fisiología , Animales , Conducta Animal/fisiología , Condicionamiento Clásico/fisiología , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Vías Nerviosas/fisiología , Sustancia Gris Periacueductal/citología , Sustancia Gris Periacueductal/fisiología , Tegmento Mesencefálico/citología
7.
Hippocampus ; 25(5): 566-80, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25402014

RESUMEN

Adenosine inhibits excitatory neurons widely in the brain through adenosine A1 receptor, but activation of adenosine A2A receptor (A2A R) has an opposite effect promoting discharge in neuronal networks. In the hippocampus A2A R expression level is low, and the receptor's effect on identified neuronal circuits is unknown. Using optogenetic afferent stimulation and whole-cell recording from identified postsynaptic neurons we show that A2A R facilitates excitatory glutamatergic Schaffer collateral synapses to CA1 pyramidal cells, but not to GABAergic inhibitory interneurons. In addition, A2A R enhances GABAergic inhibitory transmission between CA1 area interneurons leading to disinhibition of pyramidal cells. Adenosine A2A R has no direct modulatory effect on GABAergic synapses to pyramidal cells. As a result adenosine A2A R activation alters the synaptic excitation - inhibition balance in the CA1 area resulting in increased pyramidal cell discharge to glutamatergic Schaffer collateral stimulation. In line with this, we show that A2A R promotes synchronous pyramidal cell firing in hyperexcitable conditions where extracellular potassium is elevated or following high-frequency electrical stimulation. Our results revealed selective synapse- and cell type specific adenosine A2A R effects in hippocampal CA1 area. The uncovered mechanisms help our understanding of A2A R's facilitatory effect on cortical network activity.


Asunto(s)
Región CA1 Hipocampal/fisiología , Receptor de Adenosina A2A/metabolismo , Sinapsis/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Región CA1 Hipocampal/efectos de los fármacos , Estimulación Eléctrica , Espacio Extracelular/metabolismo , Ácido Glutámico/metabolismo , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Ratones Transgénicos , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Optogenética , Técnicas de Placa-Clamp , Potasio/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Sinapsis/efectos de los fármacos , Técnicas de Cultivo de Tejidos , Ácido gamma-Aminobutírico/metabolismo
8.
J Comp Neurol ; 522(14): 3308-34, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24715505

RESUMEN

The role of dopaminergic (DA) projections from the ventral tegmental area (VTA) in appetitive and rewarding behavior has been widely studied, but the VTA also has documented DA-independent functions. Several drugs of abuse, act on VTA GABAergic neurons, and most studies have focused on local inhibitory connections. Relatively little is known about VTA GABA projection neurons and their connections to brain sites outside the VTA. This study employed viral-vector-mediated cell-type-specific anterograde tracing, classical retrograde tracing, and immunohistochemistry to characterize VTA GABA efferents throughout the brain. We found that VTA GABA neurons project widely to forebrain and brainstem targets, including the ventral pallidum, lateral and magnocellular preoptic nuclei, lateral hypothalamus, and lateral habenula. Minor projections also go to central amygdala, mediodorsal thalamus, dorsal raphe, and deep mesencephalic nuclei, and sparse projections go to prefrontal cortical regions and to nucleus accumbens shell and core. These projections differ from the major VTA DA target regions. Retrograde tracing studies confirmed results from the anterograde experiments and differences in projections from VTA subnuclei. Retrogradely labeled GABA neurons were not numerous, and most non-tyrosine hydroxylase/retrogradely labeled cells lacked GABAergic markers. Many non-TH/retrogradely labeled cells projecting to several areas expressed VGluT2. VTA GABA and glutamate neurons project throughout the brain, most prominently to regions with reciprocal connections to the VTA. These data indicate that VTA GABA and glutamate neurons may have more DA-independent functions than previously recognized.


Asunto(s)
Vías Eferentes/fisiología , Neuronas GABAérgicas/fisiología , Glutamatos/metabolismo , Área Tegmental Ventral/citología , Animales , Recuento de Células , Colina O-Acetiltransferasa/metabolismo , Dependovirus/fisiología , Glutamato Descarboxilasa , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estilbamidinas/metabolismo , Sustancia P/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
9.
Nat Commun ; 5: 3427, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24619096

RESUMEN

Dysregulation of hypothalamic-pituitary-adrenal (HPA) axis activity leads to debilitating neuroendocrine or metabolic disorders such as Cushing's syndrome (CS). Glucocorticoids control HPA axis activity through negative feedback to the pituitary gland and the central nervous system (CNS). However, the cellular mechanisms involved are poorly understood, particularly in the CNS. Here we show that, in mice, selective loss of TrkB signalling in cholecystokinin (CCK)-GABAergic neurons induces glucocorticoid resistance, resulting in increased corticotrophin-releasing hormone expression, chronic hypercortisolism, adrenocortical hyperplasia, glucose intolerance and mature-onset obesity, reminiscent of the human CS phenotype. Interestingly, obesity is not due to hyperphagia or decreased energy expenditure, but is associated with increased de novo lipogenesis in the liver. Our study therefore identifies CCK neurons as a novel and critical cellular component of the HPA axis, and demonstrates the requirement of TrkB for the transmission of glucocorticoid signalling.


Asunto(s)
Colecistoquinina/metabolismo , Síndrome de Cushing/metabolismo , Neuronas GABAérgicas/metabolismo , Glicoproteínas de Membrana/metabolismo , Obesidad/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Composición Corporal/efectos de los fármacos , Calorimetría Indirecta , Colecistoquinina/genética , Síndrome de Cushing/genética , Ingestión de Alimentos/efectos de los fármacos , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Immunoblotting , Hibridación in Situ , Masculino , Glicoproteínas de Membrana/genética , Ratones , Mifepristona/farmacología , Obesidad/genética , Proteínas Tirosina Quinasas/genética
10.
Genesis ; 51(4): 234-45, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23349049

RESUMEN

Postmortem studies have revealed a downregulation of the transcription factor Pax5 in GABAergic neurons in bipolar disorder, a neurodevelopmental disorder, raising the question whether Pax5 in GABAergic neurons has a role in normal brain development. In a genetic approach to study functions of Pax5 in GABAergic neurons, Pax5 was specifically deleted in GABAergic neurons from Pax5 floxed mice using a novel Gad1-Cre transgenic mouse line expressing Cre recombinase in Gad1-positive, that is, GABAergic neurons. Surprisingly, these mice developed a marked enlargement of the lateral ventricles at approximately 7 weeks of age, which was lethal within 1-2 weeks of its appearance. This hydrocephalus phenotype was observed in mice homozygous or heterozygous for the Pax5 conditional knockout, with a gene dosage-dependent penetrance. By QTL (quantitative trait loci) mapping, a 3.5 Mb segment on mouse chromosome 4 flanked by markers D4Mit237 and D4Mit214 containing approximately 92 genes including Pax5 has previously been linked to differences in lateral ventricular size. Our findings are consistent with Pax5 being a relevant gene underlying this QTL phenotype and demonstrate that Pax5 in GABAergic neurons is essential for normal ventricular development.


Asunto(s)
Ventrículos Cerebrales/anomalías , Neuronas GABAérgicas/metabolismo , Hidrocefalia/genética , Factor de Transcripción PAX5/genética , Animales , Ventrículos Cerebrales/embriología , Cromosomas/genética , Dosificación de Gen , Marcadores Genéticos , Heterocigoto , Homocigoto , Ratones , Ratones Transgénicos , Factor de Transcripción PAX5/metabolismo , Penetrancia , Fenotipo , Mapeo Físico de Cromosoma , Sitios de Carácter Cuantitativo
11.
J Neurosci ; 31(8): 2769-80, 2011 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-21414899

RESUMEN

Inhibitory interneurons play a critical role in coordinating the activity of neural circuits. To explore the mechanisms that direct the organization of inhibitory circuits, we analyzed the involvement of tropomyosin-related kinase B (TrkB) in the assembly and maintenance of GABAergic inhibitory synapses between Golgi and granule cells in the mouse cerebellar cortex. We show that TrkB acts directly within each cell-type to regulate synaptic differentiation. TrkB is required not only for assembly, but also maintenance of these synapses and acts, primarily, by regulating the localization of synaptic constituents. Postsynaptically, TrkB controls the localization of a scaffolding protein, gephyrin, but acts at a step subsequent to the localization of a cell adhesion molecule, Neuroligin-2. Importantly, TrkB is required for the localization of an Ig superfamily cell adhesion molecule, Contactin-1, in Golgi and granule cells and the absence of Contactin-1 also results in deficits in inhibitory synaptic development. Thus, our findings demonstrate that TrkB controls the assembly and maintenance of GABAergic synapses and suggest that TrkB functions, in part, through promoting synaptic adhesion.


Asunto(s)
Diferenciación Celular/fisiología , Corteza Cerebelosa/enzimología , Corteza Cerebelosa/crecimiento & desarrollo , Receptor trkB/fisiología , Sinapsis/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Adhesión Celular/genética , Adhesión Celular/fisiología , Diferenciación Celular/genética , Interneuronas/citología , Interneuronas/enzimología , Ratones , Ratones Noqueados , Ratones Transgénicos , Sinapsis/enzimología , Sinapsis/genética , Transmisión Sináptica/genética , Tropomiosina/fisiología
12.
J Biol Chem ; 280(3): 2257-65, 2005 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-15528209

RESUMEN

The related high molecular mass microtubule-associated proteins (MAPs) MAP1A and MAP1B are predominantly expressed in the nervous system and are involved in axon guidance and synaptic function. MAP1B is implicated in fragile X mental retardation, giant axonal neuropathy, and ataxia type 1. We report the functional characterization of a novel member of the microtubule-associated protein 1 family, which we termed MAP1S (corresponding to sequence data bank entries for VCY2IP1 and C19ORF5). MAP1S contains the three hallmark domains of the microtubule-associated protein 1 family but hardly any additional sequences. It decorates neuronal microtubules and copurifies with tubulin from brain. MAP1S is synthesized as a precursor protein that is partially cleaved into heavy and light chains in a tissue-specific manner. Heavy and light chains interact to form the MAP1S complex. The light chain binds, bundles, and stabilizes microtubules and binds to actin. The heavy chain appears to regulate light chain activity. In contrast to MAP1A and MAP1B, MAP1S is expressed in a wide range of tissues in addition to neurons and represents the non-neuronal counterpart of this cytolinker family.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Actinas/metabolismo , Animales , Secuencia de Bases , Encéfalo/crecimiento & desarrollo , Cartilla de ADN , ADN Complementario , Genoma , Humanos , Inmunohistoquímica , Ratones , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Peso Molecular , Células de Purkinje/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA