Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Bioact Mater ; 38: 486-498, 2024 Aug.
Article En | MEDLINE | ID: mdl-38779592

The rapid development of messenger RNA (mRNA) vaccines formulated with lipid nanoparticles (LNPs) has contributed to control of the COVID-19 pandemic. However, mRNA vaccines have raised concerns about their potential toxicity and clinical safety, including side effects, such as myocarditis, anaphylaxis, and pericarditis. In this study, we investigated the potential of trehalose glycolipids-containing LNP (LNP S050L) to reduce the risks associated with ionizable lipids. Trehalose glycolipids can form hydrogen bonds with polar biomolecules, allowing the formation of a stable LNP structure by replacing half of the ionizable lipids. The efficacy and safety of LNP S050L were evaluated by encapsulating the mRNA encoding the luciferase reporter gene and measuring gene expression and organ toxicity, respectively. Furthermore, mice immunized with an LNP S050L-formulated mRNA vaccine expressing influenza hemagglutinin exhibited a significant reduction in organ toxicity, including in the heart, spleen, and liver, while sustaining gene expression and immune efficiency, compared to conventional LNPs (Con-LNPs). Our findings suggest that LNP S050L, a trehalose glycolipid-based LNP, could facilitate the development of safe mRNA vaccines with improved clinical safety.

2.
NPJ Vaccines ; 9(1): 34, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38360752

The implications of administration of mRNA vaccines to individuals with chronic inflammatory diseases, including myocarditis, rheumatoid arthritis (RA), and inflammatory bowel disease (IBD), are unclear. We investigated mRNA vaccine effects in a chronic inflammation mouse model implanted with an LPS pump, focusing on toxicity and immunogenicity. Under chronic inflammation, mRNA vaccines exacerbated cardiac damage and myocarditis, inducing mild heart inflammation with heightened pro-inflammatory cytokine production and inflammatory cell infiltration in the heart. Concurrently, significant muscle damage occurred, with disturbances in mitochondrial fusion and fission factors signaling impaired muscle repair. However, chronic inflammation did not adversely affect muscles at the vaccination site or humoral immune responses; nevertheless, it partially reduced the cell-mediated immune response, particularly T-cell activation. These findings underscore the importance of addressing mRNA vaccine toxicity and immunogenicity in the context of chronic inflammation, ensuring their safe and effective utilization, particularly among vulnerable populations with immune-mediated inflammatory diseases.

3.
J Med Virol ; 95(12): e29309, 2023 12.
Article En | MEDLINE | ID: mdl-38100632

The E6 and E7 proteins of specific subtypes of human papillomavirus (HPV), including HPV 16 and 18, are highly associated with cervical cancer as they modulate cell cycle regulation. The aim of this study was to investigate the potential antitumor effects of a messenger RNA-HPV therapeutic vaccine (mHTV) containing nononcogenic E6 and E7 proteins. To achieve this, C57BL/6j mice were injected with the vaccine via both intramuscular and subcutaneous routes, and the resulting effects were evaluated. mHTV immunization markedly induced robust T cell-mediated immune responses and significantly suppressed tumor growth in both subcutaneous and orthotopic tumor-implanted mouse model, with a significant infiltration of immune cells into tumor tissues. Tumor retransplantation at day 62 postprimary vaccination completely halted progression in all mHTV-treated mice. Furthermore, tumor expansion was significantly reduced upon TC-1 transplantation 160 days after the last immunization. Immunization of rhesus monkeys with mHTV elicited promising immune responses. The immunogenicity of mHTV in nonhuman primates provides strong evidence for clinical application against HPV-related cancers in humans. All data suggest that mHTV can be used as both a therapeutic and prophylactic vaccine.


Oncogene Proteins, Viral , Papillomavirus Infections , Papillomavirus Vaccines , Uterine Cervical Neoplasms , Humans , Female , Animals , Mice , Human Papillomavirus Viruses , Oncogene Proteins, Viral/genetics , Papillomavirus Infections/prevention & control , RNA, Messenger/genetics , Papillomavirus E7 Proteins/genetics , Mice, Inbred C57BL , Vaccination/methods , Immunization , Uterine Cervical Neoplasms/prevention & control
4.
J Infect Dis ; 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37711050

Developing new adjuvants that can effectively induce both humoral and cellular immune responses while broadening the immune response is of great value. In this study, we aimed to develop GM-CSF- or IL-18-expressing single-stranded RNA (ssRNA) adjuvants based on the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) and tested their efficacy in combination with ovalbumin (OVA) or inactivated influenza vaccines. Notably, cytokine-expressing RNA adjuvants increased the expression of antigen-presenting cell activation markers. Specifically, GM-CSF-expressing RNA adjuvants increased CD4+T cell responses, while IL-18-expressing RNA adjuvants increased CD8+T cell responses in mice when combined with OVA. In addition, cytokine-expressing RNA adjuvants increased the frequency of polyclonal T cells in combination with the influenza vaccine and reduced the clinical illness scores and weight loss of mice after viral challenge. Collectively, our results suggest that cytokine-expressing RNA adjuvants can be applied to protein-based or inactivated vaccines to increase their efficacy.

5.
NPJ Vaccines ; 8(1): 84, 2023 Jun 05.
Article En | MEDLINE | ID: mdl-37271785

In response to the COVID-19 pandemic, different types of vaccines, such as inactive, live-attenuated, messenger RNA (mRNA), and protein subunit, have been developed against SARS-CoV-2. This has unintentionally created a unique scenario where heterologous prime-boost vaccination against a single virus has been administered to a large human population. Here, we aimed to analyze whether the immunization order of vaccine types influences the efficacy of heterologous prime-boost vaccination, especially mRNA and protein-based vaccines. We developed a new mRNA vaccine encoding the hemagglutinin (HA) glycoprotein of the influenza virus using the 3'-UTR and 5'-UTR of muscle cells (mRNA-HA) and tested its efficacy by heterologous immunization with an HA protein vaccine (protein-HA). The results demonstrated higher IgG2a levels and hemagglutination inhibition titers in the mRNA-HA priming/protein-HA boosting (R-P) regimen than those induced by reverse immunization (protein-HA priming/mRNA-HA boosting, P-R). After the viral challenge, the R-P group showed lower virus loads and less inflammation in the lungs than the P-R group did. Transcriptome analysis revealed that the heterologous prime-boost groups had differentially activated immune response pathways, according to the order of immunization. In summary, our results demonstrate that the sequence of vaccination is critical to direct desired immune responses. This study demonstrates the potential of a heterologous vaccination strategy using mRNA and protein vaccine platforms against viral infection.

6.
Sci Rep ; 13(1): 8189, 2023 05 20.
Article En | MEDLINE | ID: mdl-37210393

Severe fever with thrombocytopenia syndrome virus was first discovered in 2009 as the causative agent of severe fever with thrombocytopenia syndrome. Despite its potential threat to public health, no prophylactic vaccine is yet available. This study developed a heterologous prime-boost strategy comprising priming with recombinant replication-deficient human adenovirus type 5 (rAd5) expressing the surface glycoprotein, Gn, and boosting with Gn protein. This vaccination regimen induced balanced Th1/Th2 immune responses and resulted in potent humoral and T cell-mediated responses in mice. It elicited high neutralizing antibody titers in both mice and non-human primates. Transcriptome analysis revealed that rAd5 and Gn proteins induced adaptive and innate immune pathways, respectively. This study provides immunological and mechanistic insight into this heterologous regimen and paves the way for future strategies against emerging infectious diseases.


Adenoviruses, Human , Severe Fever with Thrombocytopenia Syndrome , Viral Vaccines , Animals , Mice , Viral Vaccines/genetics , Vaccination/methods , T-Lymphocytes , Genetic Vectors/genetics , Antibodies, Viral , Immunization, Secondary/methods
7.
BMC Cancer ; 22(1): 1041, 2022 Oct 05.
Article En | MEDLINE | ID: mdl-36199130

BACKGROUND: Adjuvant therapies such as radiation therapy, chemotherapy, and immunotherapy are usually given after cancer surgery to improve the survival of cancer patients. However, despite advances in several adjuvant therapies, they are still limited in the prevention of recurrences. METHODS: We evaluated the immunological effects of RNA-based adjuvants in a murine melanoma model. Single-stranded RNA (ssRNA) were constructed based on the cricket paralysis virus (CrPV) internal ribosome entry site (IRES). Populations of immune cells in bone marrow cells and lymph node cells following immunization with CrPVIRES-ssRNA were determined using flow cytometry. Activated cytokine levels were measured using ELISA and ELISpot. The tumor protection efficacy of CrPVIRES-ssRNA was analyzed based on any reduction in tumor size or weight, and overall survival. RESULTS: CrPVIRES-ssRNA treatment stimulated antigen-presenting cells in the drain lymph nodes associated with activated antigen-specific dendritic cells. Next, we evaluated the expression of CD40, CD86, and XCR1, showing that immunization with CrPVIRES-ssRNA enhanced antigen presentation by CD8a+ conventional dendritic cell 1 (cDC1), as well as activated antigen-specific CD8 T cells. In addition, CrPVIRES-ssRNA treatment markedly increased the frequency of antigen-specific CD8 T cells and interferon-gamma (IFN-γ) producing cells, which promoted immune responses and reduced tumor burden in melanoma-bearing mice. CONCLUSIONS: This study provides evidence that the CrPVIRES-ssRNA adjuvant has potential for use in therapeutic cancer vaccines. Moreover, CrPVIRES-ssRNA possesses protective effects on various cancer cell models.


Cancer Vaccines , Melanoma , Adjuvants, Immunologic , Animals , Cancer Vaccines/therapeutic use , Immunotherapy , Interferon-gamma/genetics , Internal Ribosome Entry Sites , Melanoma/genetics , Melanoma/therapy , Mice , RNA, Viral/genetics
8.
Sci Rep ; 11(1): 11981, 2021 06 07.
Article En | MEDLINE | ID: mdl-34099809

There is an unmet need for new influenza vaccine strategies that compensate for impaired vaccine responses in elderly individuals. Here, we evaluated the effectiveness of a single-stranded RNA (ssRNA) as an adjuvant to enhance the efficacy of inactivated influenza vaccine (IIV) in mouse models. Immunization with the ssRNA along with IIV reduced viral titers as well as pathological and inflammatory scores in the lungs after influenza challenge in aged mice. ssRNA induced balanced Th1/Th2 responses with an increase in IgA titers. Moreover, the ssRNA adjuvant markedly increased the frequency of influenza HA-specific T cells and IFN-γ production along with the expression of genes related to innate and adaptive immune systems that could overcome immunosenescence in aged mice. Our findings indicate that ssRNA is an efficient vaccine adjuvant that boosts cellular and humoral immunity in aged mice, demonstrating its potential as a novel adjuvant for currently available influenza virus vaccines for elderly individuals.


Antibodies, Viral/immunology , Influenza Vaccines/immunology , RNA/metabolism , Vaccines, Inactivated/immunology , Adjuvants, Immunologic/metabolism , Age Factors , Animals , Blood Specimen Collection , Female , Humans , Immunity, Humoral , Influenza Vaccines/metabolism , Interferon-gamma/metabolism , Mice , Mice, Inbred BALB C , Models, Animal , T-Lymphocytes/metabolism , Vaccination , Vaccines, Inactivated/metabolism
9.
Sci Adv ; 7(22)2021 05.
Article En | MEDLINE | ID: mdl-34049881

Since the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), various vaccines are being developed, with most vaccine candidates focusing on the viral spike protein. Here, we developed a previously unknown subunit vaccine comprising the receptor binding domain (RBD) of the spike protein fused with the tetanus toxoid epitope P2 (RBD-P2) and tested its efficacy in rodents and nonhuman primates (NHPs). We also investigated whether the SARS-CoV-2 nucleocapsid protein (N) could increase vaccine efficacy. Immunization with N and RBD-P2 (RBDP2/N) + alum increased T cell responses in mice and neutralizing antibody levels in rats compared with those obtained using RBD-P2 + alum. Furthermore, in NHPs, RBD-P2/N + alum induced slightly faster SARS-CoV-2 clearance than that induced by RBD-P2 + alum, albeit without statistical significance. Our study supports further development of RBD-P2 as a vaccine candidate against SARS-CoV-2. Also, it provides insights regarding the use of N in protein-based vaccines against SARS-CoV-2.


COVID-19 Vaccines/immunology , COVID-19/prevention & control , Coronavirus Nucleocapsid Proteins/immunology , Recombinant Fusion Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Tetanus Toxoid/immunology , Animals , COVID-19/genetics , COVID-19/immunology , COVID-19 Vaccines/genetics , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/genetics , Female , Macaca fascicularis , Mice , Mice, Inbred BALB C , Mice, Transgenic , Phosphoproteins/genetics , Phosphoproteins/immunology , Protein Domains , Rats , Recombinant Fusion Proteins/genetics , SARS-CoV-2/genetics , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spodoptera , Tetanus Toxoid/genetics , Vero Cells
...