Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Viruses ; 16(2)2024 01 31.
Article En | MEDLINE | ID: mdl-38399993

Although the COVID-19 pandemic caused by SARS-CoV-2 viruses is officially over, the search for new effective agents with activity against a wide range of coronaviruses is still an important task for medical chemists and virologists. We synthesized a series of thiazolo-thiophenes based on (+)- and (-)-usnic acid and studied their ability to inhibit the main protease of SARS-CoV-2. Substances containing unsubstituted thiophene groups or methyl- or bromo-substituted thiophene moieties showed moderate activity. Derivatives containing nitro substituents in the thiophene heterocycle-just as pure (+)- and (-)-usnic acids-showed no anti-3CLpro activity. Kinetic parameters of the most active compound, (+)-3e, were investigated, and molecular modeling of the possible interaction of the new thiazolo-thiophenes with the active site of the main protease was carried out. We evaluated the binding energies of the ligand and protein in a ligand-protein complex. Active compound (+)-3e was found to bind with minimum free energy; the binding of inactive compound (+)-3g is characterized by higher values of minimum free energy; the positioning of pure (+)-usnic acid proved to be unstable and is accompanied by the formation of intermolecular contacts with many amino acids of the catalytic binding site. Thus, the molecular dynamics results were consistent with the experimental data. In an in vitro antiviral assay against six strains (Wuhan, Delta, and four Omicron sublineages) of SARS-CoV-2, (+)-3e demonstrated pronounced antiviral activity against all the strains.


Benzofurans , COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Pandemics , Ligands , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Molecular Docking Simulation , Viral Nonstructural Proteins/metabolism , Molecular Dynamics Simulation , Antiviral Agents/therapeutic use , Thiophenes/pharmacology , Peptide Hydrolases/metabolism
2.
Arch Pharm (Weinheim) ; 357(3): e2300549, 2024 Mar.
Article En | MEDLINE | ID: mdl-38036303

A new series of heterocyclic derivatives with a 1,7,7-trimethylbicyclo[2.2.1]heptane fragment was designed, synthesised and biologically evaluated. Synthesis of the target compounds was performed using the Cu(I) catalysed cycloaddition reaction. The key starting substances in the click reaction were an alkyne containing a 1,7,7-trimethylbicyclo[2.2.1]heptane fragment and a series of azides with saturated nitrogen-containing heterocycles. Some of the derivatives were found to exhibit strong antiviral activity against Marburg and Ebola pseudotype viruses. Lysosomal trapping assays revealed the derivatives to possess lysosomotropic properties. The molecular modelling study demonstrated the binding affinity between the compounds investigated and the possible active site to be mainly due to hydrophobic interactions. Thus, combining a natural hydrophobic structural fragment and a lysosome-targetable heterocycle may be an effective strategy for designing antiviral agents.


Heptanes , Triazoles , Structure-Activity Relationship , Catalysis , Triazoles/pharmacology , Antiviral Agents/pharmacology
3.
Eur J Med Chem ; 207: 112726, 2020 Dec 01.
Article En | MEDLINE | ID: mdl-32905862

In this study, we screened a large library of (+)-camphor and (-)-borneol derivatives to assess their filovirus entry inhibition activities using pseudotype systems. Structure-activity relationship studies revealed several compounds exhibiting submicromolar IC50 values. These compounds were evaluated for their effect against natural Ebola virus (EBOV) and Marburg virus. Compound 3b (As-358) exhibited the good antiviral potency (IC50 = 3.7 µM, SI = 118) against Marburg virus, while the hydrochloride salt of this compound 3b·HCl had a strong inhibitory effect against Ebola virus (IC50 = 9.1 µM, SI = 31) and good in vivo safety (LD50 > 1000 mg/kg). The results of molecular docking and in vitro mutagenesis analyses suggest that the synthesized compounds bind to the active binding site of EBOV glycoprotein similar to the known inhibitor toremifene.


Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Ebolavirus/drug effects , Marburgvirus/drug effects , Monoterpenes/chemistry , Monoterpenes/pharmacology , Animals , Antiviral Agents/toxicity , Ebolavirus/physiology , HEK293 Cells , Hemorrhagic Fever, Ebola/drug therapy , Humans , Marburg Virus Disease/drug therapy , Marburgvirus/physiology , Mice, Inbred ICR , Molecular Docking Simulation , Monoterpenes/toxicity , Virus Internalization
...