Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
Saudi Pharm J ; 31(8): 101674, 2023 Aug.
Article En | MEDLINE | ID: mdl-37448843

Background: Pharmaceutical nanomedicine products are expected to impact the global pharmaceutical market and healthcare system significantly. Since 2000, the Food and Drug Administration (FDA) and European Medicines Agency (EMA) have approved over 80 nanomedicine products for marketing; an additional double that number is currently being tested in clinical trials. The nanomedicine market is expected to reach USD 350.8 billion by 2025 from USD 138.8 billion in 2016. This demonstrates the importance of nanotechnology to the delivery of pharmaceuticals. The main benefits of employing nanotechnology to distribute therapeutic agents include reducing the undesired toxicity from non-specific distribution and increasing patient adherence, which can indirectly minimize the burden on the country's healthcare system. Such products are expected to gain a significant economic impact on Saudi Arabia's pharmaceutical drugs market once they get developed locally. Method: A descriptive and cross-sectional study, including a web-based questionnaire and a complete categorization of pharmaceutical products formed by the national industries in Saudi Arabia, was utilized to investigate the current and future direction of pharmaceutical manufacturing exploiting nanotechnology in the Kingdom. Results: The survey showed an apparent lack of willingness within the national pharmaceutical industries, as the majority (≈ 86%) of the leading Saudi companies cannot enable nanotechnology-based medicines in their manufacturing. However, more than 93% of the national pharmaceutical industries, upon the basis of the responses, agreed that the development of pharmaceutical products with nanotechnology is an important step toward solving various complications associated with conventional forms of the available medicine. Conclusion: National pharmaceutical industries in Saudi Arabia will need to get closer to manufacturing nanomedicines by partnering with international pioneer companies. In addition, empowering the local research and development (R&D) centers in nano delivery systems could facilitate translating their R&D outcomes into novel advanced and commercialized products. This could imitate the direction of the global pharmaceutical market and share its revenue which will positively reflect on the Kingdom's economy.

2.
Redox Rep ; 28(1): 2218679, 2023 Dec.
Article En | MEDLINE | ID: mdl-37260037

OBJECTIVES: Gastric ulcer (GU) is a prevalent chronic digestive disease affecting about 10% of the world's population leading to gastrointestinal perforation and bleeding. Genistein is a legume flavonoid with antioxidants, anti-inflammatory and antibacterial activities. Therefore, we aimed to investigate the ability of genistein to reduce experimentally induced GU in rats by affecting gastric tissue fibrosis Wnt/ß-catenin/TGF-ß/SMAD4 pathway. METHODS: Thirty rats were used. Ten rats served as control, and GU was induced in twenty rats using a single dose of indomethacin (80 mg/kg) orally. Following induction of GU, ten were treated with genistein 25 mg/kg orally. The gastric tissues were isolated to investigate markers of gastric fibrosis, Wnt, ß-catenin, transforming growth factor (TGF)-ß, SMAD4, and Protein kinase B (PKB). In addition, gastric sections were stained with PAS and anti-TGF-ß antibodies. RESULTS: Investigation GU micro-images revealed degeneration in both surface cells and glandular epithelial cells, which was improved by genistein. In addition, treatment with genistein significantly reduced the expression of Wnt, ß-catenin, TGF-ß, SMAD4, and PKB. CONCLUSION: Besides antioxidant activity, genistein improves experimentally induced GU in rats, at least in part, via reduction of gastric tissue fibrosis as indicated by reduction in expression of Wnt, ß-catenin, TGF-ß, SMAD4, and PKB.


Genistein , Stomach Ulcer , Transforming Growth Factor beta , Animals , Rats , beta Catenin/metabolism , Catenins , Fibrosis , Genistein/therapeutic use , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Transforming Growth Factor beta/metabolism
3.
Metabolites ; 13(6)2023 Jun 07.
Article En | MEDLINE | ID: mdl-37367890

Tamarindus indica Linn (tamarind, F. Leguminosae) is one of the most widely consumed edible fruits in the world. Phytochemical investigation of tamarind pulp n-butanol fraction yielded one new (+)-pinitol glycoside compound 1 (25% w/w), and 1D, 2D NMR, and HRESIMS investigation were used to confirm the new compound's structure. (+)-Pinitol glycoside showed anti-Alzheimer potential that was confirmed in prophylactic and treatment groups by decreasing time for the T-maze test; decreased TAO, brain and serum AChE, MDA, tau protein levels, and ß amyloid peptide protein levels; and increasing GPX, SOD levels, and in vivo regression of the neurodegenerative features of Alzheimer's dementia in an aluminum-intoxicated rat model. The reported molecular targets for human Alzheimer's disease were then used in a network pharmacology investigation to examine their complex interactions and identify the key targets in the disease pathogenesis. An in silico-based analysis (molecular docking, binding free energy calculation (ΔGBinding), and molecular dynamics simulation) was performed to identify the potential targets for compound 1. The findings of this study may lead to the development of dietary supplements for the treatment of Alzheimer's disease.

4.
BMC Med Educ ; 23(1): 35, 2023 Jan 18.
Article En | MEDLINE | ID: mdl-36650501

BACKGROUND: Hundreds of pharmacists graduate from pharmacy colleges in Saudi Arabia, and various factors influence their choice of career pathway. Very few single-institution studies assessed career choices of pharmacy students with or without evaluating the influencing factors. Therefore, this study aimed to evaluate career choices and the associating factors of pharmacy interns from multiple colleges in Saudi Arabia. METHODS: This was a cross-sectional study that surveyed pharmacy interns from 25 pharmacy colleges in Saudi Arabia using an online questionnaire. The survey was sent during the last rotation month in the internship year (May-June 2022). RESULTS: Of 454 participants, 411 (90.5%) were enrolled in Doctor of Pharmacy programs. While most participants were interested in becoming clinical pharmacists (n = 183; 40.3%), a considerable number were also interested in working in different sectors of pharmaceutical companies and industry (n = 127; 28%). Internship training significantly correlated with selecting clinical pharmacy specialist career (r = 0.19; P = 0.0001), whereas salary/financial incentives significantly influenced the choice of working as sales and marketing representatives and pharmacy product specialists in pharmaceutical companies (r = 0.29 and 0.24; P < 0.0001 for both). College courses correlated with choosing academia in pharmaceutical sciences (r = 0.20; P < 0.0001), whereas summer training correlated with the community pharmacy career (r = 0.11; P = 0.02). CONCLUSION: Pharmacy colleges should utilize results from this study to enhance the exposure of pharmacy students during their academic years to different pharmacy career pathways by allowing the opportunity to shadow pharmacists from different sectors as part of college courses, inviting previous graduates, and activating the role of academic advisors in career orientation.


Pharmacies , Pharmacy , Humans , Saudi Arabia , Cross-Sectional Studies , Career Choice , Surveys and Questionnaires , Pharmaceutical Preparations
5.
Antioxidants (Basel) ; 12(1)2023 Jan 03.
Article En | MEDLINE | ID: mdl-36670981

Drug-metabolizing enzymes are either boosted or suppressed by diabetes mellitus. This research was designed to explore Fagonia cretica L. aerial parts' impact on CYP3A4 and UGT2B7 activity and their mRNA expression in diabetic rats. Fagonia cretica (F. cretica) dried powder was sequentially extracted with n-hexane, chloroform, ethyl acetate, methanol, and water. The methanol extract and aqueous fraction presented the most significant potential to decrease the concentration of alpha-hydroxyl midazolam, with 176.0 ± 0.85 mg/Kg and 182.9 ± 0.99 mg/Kg, respectively, compared to the streptozotocin (STZ)-induced diabetic group, reflecting the inhibition in CYP3A4 activity. The fold change in mRNA expression of CYP3A4 was decreased significantly by the methanol extract, and the aqueous fraction of F. cretica estimated by 0.15 ± 0.002 and 0.16 ± 0.001, respectively, compared with the diabetic group. Morphine metabolism was significantly increased in rats treated with F. cretica methanol extract and its aqueous fraction, displaying 93.4 ± 0.96 mg/Kg and 96.4 ± 1.27 mg/Kg, respectively, compared with the metabolism of morphine in the diabetic group, which highlights the induction of UGT2B7 activity. The fold change in mRNA expression of UGT2B7 was significantly increased by the methanol extract and the aqueous fraction, estimated at 8.14 ± 0.26 and 7.17 ± 0.23 respectively, compared to the diabetic group. Phytochemical analysis was performed using high-performance liquid chromatography (HPLC), where the methanol extract showed more flavonoids and phenolic compounds compared to the aqueous fraction of F. cretica. The obtained results were further consolidated by molecular docking studies, where quercetin showed the best fitting within the active pocket of CYP3A4, followed by gallic acid, displaying free binding energies (∆G) of -30.83 and -23.12 kcal/mol, respectively. Thus, F. cretica could serve as a complementary medicine with standard anti-diabetic therapy that can modulate the activity of the drug-metabolizing enzymes.

6.
Metabolites ; 12(12)2022 Nov 25.
Article En | MEDLINE | ID: mdl-36557216

LC-HRESIMS metabolomic profiling of Olea europaea L. cv. Picual (OEP) (Saudi Arabian olive cultivar, F. Oleacea) revealed 18 compounds. Using pharmacology networking to specify the targets of the identified compounds with a relationship to Alzheimer's disease, it was possible to identify the VEGFA, AChE, and DRD2 genes as the top correlated genes to Alzheimer's disease with 8, 8, and 6 interactions in the same order. The mechanism of action on cellular components, biological processes, and molecular functions was determined by gene enrichment analysis. A biological pathway comparison revealed 13 shared pathways between the identified genes and Alzheimer protein genes (beta-amyloid band tau proteins). The suggested extract's anti-Alzheimer potential in silico screening was confirmed through in vivo investigation in regressing the neurodegenerative features of Alzheimer's dementia in an aluminum-intoxicated rat model (protective and therapeutic effects, 100 mg/kg b.w.). In vivo results suggested that OEP extract significantly improved Alzheimer's rats, which was indicated by the crude extract's ability to improve T-maze performance; lower elevated serum levels of AChE, AB peptide, and Ph/T ratio; and normalize the reduced level of TAC during the study. The results presented in this study may provide potential dietary supplements for the management of Alzheimer's disease.

7.
Cureus ; 14(12): e32519, 2022 Dec.
Article En | MEDLINE | ID: mdl-36531792

Background Hepatocellular carcinoma (HCC) can explicate about 90% of the total primary liver cancer cases, with approximately 800,000 new cases identified each year worldwide. In addition, any changes in the expression of the tumor necrosis factor α (TNF-α) type 1 receptor (TNFR1) might impact many biological processes, which may lead to cancer. Aims We conducted the following study to investigate the ability of CAY10500, a TNF-α inhibitor that prevents binding to the TNF receptor 1, to produce anticancer effects against hepatocellular carcinoma experimentally induced in rats and to discover its effect on nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Materials and methods HCC was induced in rats via 200 mg/kg thioacetamide followed by treating some rats with IV 1 mg/kg CAY10500. Assessment of the liver impairment was by measuring the serum α-fetoprotein (AFP) and investigation of liver sections stained with hematoxylin/eosin. The hepatic expression of both the messenger RNA (mRNA) and protein levels of TNF-α, TNFR1, Nrf2, and HO-1 was assessed. Results We found that CAY10500 increased the survival percent of rats associated with a reduction in serum AFP and the number of hepatic nodules. Besides, CAY10500 reduced the expression of TNFR1 without affecting the expression of TNF-α. Finally, CAY10500 increased the expression of both Nrf2 and HO-1. Conclusions Inhibition of TNFR1 expression in HCC by using CAY10500 produced therapeutic effects as indicated by increasing the survival rate, reducing the serum AFP level, decreasing liver nodules, and improving hepatocytes' structure. In addition, TNFR1 significantly enhanced the expression of Nrf2 and HO-1.

8.
Molecules ; 27(22)2022 Nov 17.
Article En | MEDLINE | ID: mdl-36432065

Pimenta racemosa is a commonly known spice used in traditional medicine to treat several ailments. In this study, comprehensive phytochemical profiling of the essential oils and methanol extracts of P. racemosa leaves and stems was performed, alongside assessing their potential Helicobacter pylori inhibitory activity in vitro and in silico. The essential oils were chemically profiled via GC-MS. Moreover, the methanol extracts were profiled using HPLC-PDA-ESI-MS/MS. The antibacterial activity of the essential oils and methanol extracts against H. pylori was determined by adopting the micro-well dilution method. GC-MS analysis unveiled the presence of 21 constituents, where eugenol represented the major component (57.84%) and (59.76%) in both leaves and stems of essential oils, respectively. A total of 61 compounds were annotated in both leaves and stems of P. racemosa methanolic extracts displaying richness in phenolic compounds identified as (epi)catechin and (epi)gallocatechin monomers and proanthocyanidins, hydrolyzable tannin derivatives (gallotannins), flavonoids, and phenolic acids. The stem essential oil showed the most promising inhibitory effects on H. pylori, exhibiting an MIC value of 3.9 µg/mL, comparable to clarithromycin with an MIC value of 1.95 µg/mL. Additionally, in silico molecular modeling studies revealed that decanal, eugenol, terpineol, delta-cadinene, and amyl vinyl showed potential inhibitory activity on H. pylori urease as demonstrated by high-fitting scores indicating good binding to the active sites. These findings indicate that P. racemosa comprises valuable phytochemical constituents with promising therapeutic effects, particularly the stem, an economic agro-industrial waste.


Helicobacter pylori , Oils, Volatile , Pimenta , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Gas Chromatography-Mass Spectrometry , Chromatography, Liquid , Methanol/chemistry , Eugenol/pharmacology , Tandem Mass Spectrometry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry
9.
Front Immunol ; 13: 907481, 2022.
Article En | MEDLINE | ID: mdl-35911751

Marburg virus (MARV) is one of the most harmful zoonotic viruses with deadly effects on both humans and nonhuman primates. Because of its severe outbreaks with a high rate of fatality, the world health organization put it as a risk group 4 pathogen and focused on the urgent need for the development of effective solutions against that virus. However, up to date, there is no effective vaccine against MARV in the market. In the current study, the complete proteome of MARV (seven proteins) was analyzed for the antigenicity score and the virulence or physiological role of each protein where we nominated envelope glycoprotein (Gp), Transcriptional activator (VP30), and membrane-associated protein (VP24) as the candidates for epitope prediction. Following that, a vaccine construct was designed based on CTL, HTL, and BCL epitopes of the selected protein candidates and to finalize the vaccine construct, several amino acid linkers, ß-defensin adjuvant, and PADRE peptides were incorporated. The generated potential vaccine was assessed computationally for several properties such as antigenicity, allergenicity, stability, and other structural features where the outcomes of these assessments nominated this potential vaccine to be validated for its binding affinity with two molecular targets TLR-8 and TLR-4. The binding score and the stability of the vaccine-receptor complex, which was deeply studied through molecular docking-coupled dynamics simulation, supported the selection of our designed vaccine as a putative solution for MARV that should be validated through future wet-lab experiments. Here, we describe the computational approach for designing and analysis of this potential vaccine.


Marburgvirus , Animals , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Humans , Molecular Docking Simulation , Proteome , Vaccines, Subunit
10.
Basic Clin Pharmacol Toxicol ; 131(5): 406-419, 2022 Nov.
Article En | MEDLINE | ID: mdl-36029292

Patients with ulcerative colitis (UC) experience diarrhoea, hematochezia and abdominal pain. UC is a well-known health challenge affecting 200-250 per 100 000 individuals worldwide, with a similar prevalence in both sexes and elevated upon activation of gut immune responses. We evaluated the potential therapeutic effects of cycloastragenol in experimentally induced UC rats and examined the modulation of sphingosine kinase (SphK), macrophage inflammatory protein (MIP)-1α and miR-143. We treated UC rats with 30 mg/kg cycloastragenol and assessed gene and protein expression levels of SphK, MIP-1α, B-cell lymphoma 2 (BCL2), BCL2-associated X (BAX), miR-143, NF-κB, tumour necrosis factor (TNF)-α and active caspase-3. Colon sections were examined using electron microscopy; additional sections were stained with haematoxylin-eosin or immunostained with anti-TNF-α and anti-caspase-3 antibodies. Electron microscopy of UC specimens revealed dark distorted goblet cell nuclei with disarranged mucus granules and a nondistinct brush border with atypical microvilli. Haematoxylin-eosin staining showed damaged intestinal glands, severe haemorrhage and inflammatory cell infiltration. Cycloastragenol treatment improved the induced morphological changes. In UC rats, cycloastragenol significantly reduced expression levels of SphK, MIP-1α, BAX, NF-κB, TNF-α and active caspase-3, associated with BCL2 and miR-143 overexpression. Therefore, cycloastragenol protects against UC by modulating SphK/MIP-1α/miR-143, subsequently deactivating inflammatory and apoptotic pathways.


Colitis, Ulcerative , MicroRNAs , Animals , Chemokine CCL3/genetics , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Eosine Yellowish-(YS)/therapeutic use , Female , Male , MicroRNAs/genetics , NF-kappa B/metabolism , Phosphotransferases (Alcohol Group Acceptor) , Rats , Sapogenins , Tumor Necrosis Factor Inhibitors , Tumor Necrosis Factor-alpha/metabolism , bcl-2-Associated X Protein/genetics
11.
BMC Complement Med Ther ; 22(1): 196, 2022 Jul 23.
Article En | MEDLINE | ID: mdl-35870906

BACKGROUND: Ulcerative colitis (UC) is an inflammatory bowel disease. Fucoidan, sulfated polysaccharide of brown seaweed, demonstrates various pharmacological actions as anti-inflammatory, anti-tumor and anti-bacterial effects. Therefore, we opt to investigate the potential curative effects of fucoidan in experimentally induced UC in rats through modulating aryl hydrocarbon receptor (AhR), phosphodiesterase-4 (PDE4), nuclear factor erythroid 2-related factor 2 (Nrf2) and Heme Oxygenase-1 (HO-1). METHODS: UC was induced in rats using intracolonic 2 ml of 4% acetic acid. Some rats were treated with 150 mg/kg fucoidan. Samples of colon were used to investigate gene and protein expression of AhR, PDE4, Nrf2, HO-1 and cyclic adenosine monophosphate (cAMP). Sections of colon were stained with hematoxylin/eosin, Alcian blue or immune-stained with anti-PDE4 antibodies. RESULTS: Investigation of hematoxylin/eosin stained micro-images of UC rats revealed damaged intestinal glands, severe hemorrhage and inflammatory cell infiltration, while sections stained with Alcian Blue revealed damaged and almost absent intestinal glands. UC results in elevated gene and protein expression of PDE4 associated with reduced gene and protein expression of AhR, IL-22, cAMP, Nrf2 and HO-1. Finally, UC increased the oxidative stress and reduced antioxidant activity in colon tissues. All morphological changes as well as gene and protein expressions were ameliorated by fucoidan. CONCLUSION: Fucoidan could treat UC induced in rats. It restored the normal weight and length of colon associated with morphological improvement as found by examining sections stained with hematoxylin/eosin and Alcian Blue. The curative effects could be explained by enhancing antioxidant activity, reducing the expression of PDE4 and increasing the expression of AhR, IL-22 and cAMP.


Colitis, Ulcerative , Acetic Acid , Alcian Blue , Animals , Antioxidants/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/therapeutic use , Eosine Yellowish-(YS)/therapeutic use , Hematoxylin/therapeutic use , NF-E2-Related Factor 2/metabolism , Polysaccharides/pharmacology , Rats , Receptors, Aryl Hydrocarbon/therapeutic use
12.
J Fungi (Basel) ; 8(5)2022 Apr 24.
Article En | MEDLINE | ID: mdl-35628699

Cancer represents one of the most prevalent causes of global death. CK2 (casein kinase 2) activation boosted cancer proliferation and progression. Therefore, CK2 inhibition can have a crucial role in prohibiting cancer progression and enhancing apoptosis. Fungi have gained vast interest as a wealthy pool of anticancer metabolites that could particularly target various cancer progression-linked signaling pathways. Phenalenones are a unique class of secondary metabolites that possess diverse bioactivities. In the current work, the CK2 inhibitory capacity of 33 fungal phenalenones was explored using computational studies. After evaluating the usefulness of the compounds as enzyme inhibitors by ADMET prediction, the compounds were prepared for molecular docking in the CK2-α1 crystal structure (PDB: 7BU4). Molecular dynamic simulation was performed on the top two scoring compounds to evaluate their binding affinity and protein stability through a simulated physiological environment. Compound 19 had a superior binding affinity to the co-crystallized ligand (Y49). The improved affinity can be attributed to the fact that the aliphatic chain makes additional contact with Asp120 in a pocket distant from the active site.

13.
Molecules ; 27(8)2022 Apr 07.
Article En | MEDLINE | ID: mdl-35458586

Pluchea indica (L.) Less. (Asteraceae) commonly known as Indian camphorweed, pluchea, or marsh fleabane has gained great importance in various traditional medicines for its nutritional and medicinal benefits. It is utilized to cure several illnesses such as lumbago, kidney stones, leucorrhea, inflammation, gangrenous and atonic ulcer, hemorrhoids, dysentery, eye diseases, itchy skin, acid stomach, dysuria, abdominal pain, scabies, fever, sore muscles, dysentery, diabetes, rheumatism, etc. The plant or its leaves in the form of tea are commonly used for treating diabetes and rheumatism. The plant is a rich source of calcium, vitamin C, dietary fiber, and ß-carotene. Various biomolecules have been isolated from P. indica, including thiophenes, terpenes, quinic acids, sterols, lignans, phenolics, and flavonoids. The current review reports detailed information about the phytoconstituents and pharmacological relevance of P. indica and the link to its traditional uses. The reported studies validated the efficacy and safety of P. indica, as well as supported its traditional uses for treating various ailments and promoting health and well-being. Thus, this could encourage the development of this plant into a healthy food supplement or medicine for the prevention and treatment of various diseases. However, further studies on the drug interactions, mechanism of action, pharmacokinetics, toxicology, and metabolism, as well as clinical trials, should be carried out.


Asteraceae , Dysentery , Plants, Medicinal , Rheumatic Diseases , Dysentery/drug therapy , Humans , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytotherapy , Plant Extracts , Rheumatic Diseases/drug therapy
14.
Plants (Basel) ; 11(4)2022 Feb 17.
Article En | MEDLINE | ID: mdl-35214871

Naturally, thiophenes represent a small family of natural metabolites featured by one to five thiophene rings. Numerous plant species belonging to the family Asteraceae commonly produce thiophenes. These metabolites possessed remarkable bioactivities, including antimicrobial, antiviral, anti-inflammatory, larvicidal, antioxidant, insecticidal, cytotoxic, and nematicidal properties. The current review provides an update over the past seven years for the reported natural thiophene derivatives, including their sources, biosynthesis, spectral data, and bioactivities since the last review published in 2015. Additionally, with the help of the SuperPred webserver, an AI (artificial intelligence) tool, the potential drug target for the compounds was predicted. In silico studies were conducted for Cathepsin D with thiophene derivatives, including ADMET (drug absorption/distribution/metabolism/excretion/and toxicity) properties prediction, molecular docking for the binding interaction, and molecular dynamics to evaluate the ligand-target interaction stability under simulated physiological conditions.

15.
Pharmaceutics ; 13(12)2021 Dec 13.
Article En | MEDLINE | ID: mdl-34959424

Lung cancer is a dangerous type of cancer in men and the third leading cause of cancer-related death in women, behind breast and colorectal cancers. Thymoquinone (THQ), a main compound in black seed essential oils, has a variety of beneficial effects, including antiproliferative, anti-inflammatory, and antioxidant properties. On the other hand, scorpion venom peptides (SV) induce apoptosis in the cancer cells, making it a promising anticancer agent. THQ, SV, and Phospholipon® 90H (PL) were incorporated in a nano-based delivery platform to assess THQ's cellular uptake and antiproliferative efficacy against a lung cancer cell line derived from human alveolar epithelial cells (A549). Several nanovesicles were prepared and optimized using factorial experimental design. The optimized phytosome formulation contained 79.0 mg of PL and 170.0 mg of SV, with vesicle size and zeta potential of 209.9 nm and 21.1 mV, respectively. The IC50 values revealed that A549 cells were significantly more sensitive to the THQ formula than the plain formula and THQ. Cell cycle analysis revealed that THQ formula treatment resulted in significant cell cycle arrest at the S phase, increasing cell population in this phase by 22.1%. Furthermore, the THQ formula greatly increased cell apoptosis (25.17%) when compared to the untreated control (1.76%), plain formula (11.96%), or THQ alone (13.18%). The results also indicated that treatment with THQ formula significantly increased caspase-3, Bax, Bcl-2, and p53 mRNA expression compared to plain formula and THQ. In terms of the inflammatory markers, THQ formula significantly reduced the activity of TNF-α and NF-κB in comparison with the plain formula and THQ only. Overall, the findings from the study proved that a phytosome formulation of THQ could be a promising therapeutic approach for the treatment of lung adenocarcinoma.

16.
J Clin Med ; 10(21)2021 Oct 31.
Article En | MEDLINE | ID: mdl-34768647

Prostate cancer (PCa) represents the most commonly non-cutaneous diagnosed cancer in men worldwide and occupies a very wide area of preclinical and clinical research. Targeted therapy for any cancer depends on the understanding of the molecular bases and natural behaviour of the diseases. Despite the well-known effect of androgen deprivation on PCa, many patients develop resistance either for antiandrogen therapy or other new treatment modalities such as checkpoint inhibitors and chemotherapy. Comprehensive understanding of the development of PCa as well as of the mechanisms underlying its progression is mandatory to maximise the benefit of the current approved medications or to guide the future research for targeted therapy of PCa. The aim of this review was to provide updates on the most recent mechanisms regarding the development and the progression of PCa. According to the current understanding, future treatment strategies should include more predictive genetic and biomarker analysis to assign different patients to the expected most appropriate and effective treatment.

17.
J Diabetes Res ; 2020: 9408316, 2020.
Article En | MEDLINE | ID: mdl-32733971

The chronic hyperglycemia in diabetes is associated with long-term damage, dysfunction, and failure of different organs. Lack of patient education and knowledge about these complications can worsen the quality of a patient's life. Hence, more efforts are needed to improve patient's education especially in rural areas. Aim. Our objective is to explore the association between demographic variables and the knowledge of self-care practices in type 2 diabetes mellitus. Methods. We used observational cross-sectional descriptive study using a validated self-administered questionnaire in both Arabic and English languages as well. A descriptive correlation design analyzed the questionnaire completed by a convenience sample meeting the inclusion criteria. Results. A total of 100 patients met the inclusion criteria for the analysis out of 3251 patients who completed the questionnaire. The study population has low moderate knowledge in diabetes, moderate knowledge in self-care practices, and good knowledge about complications of nephropathy and cardiovascular disease. No significant association between demographic variables. However, better knowledge observed in male (p = 0.028) and self-care practices with female (p = 0.020). Further, educational status is significantly influencing the knowledge of diabetic patients. Conclusion. The study emphasizing irrespective of demographic variable and the importance of patient education to achieve well glycemic control.


Diabetes Mellitus, Type 2 , Health Knowledge, Attitudes, Practice , Self Care , Age Factors , Aged , Cross-Sectional Studies , Educational Status , Female , Humans , Male , Middle Aged , Saudi Arabia , Sex Factors
18.
Plants (Basel) ; 9(8)2020 Aug 14.
Article En | MEDLINE | ID: mdl-32823927

Phytochemical study of Chiliadenus montanus aerial parts afforded six compounds; Intermedeol (1), 5α-hydroperoxy-ß-eudesmol (2), 5,7-dihydroxy-3,3',4'-trimethoxyflavone (3), 5,7,4'-trihydroxy-3,6,3'-trimethoxyflavone (jaceidin) (4), eudesm-11,13-ene-1ß,4ß,7α-triol (5) and 1ß,4ß,7ß,11-tetrahydroxyeudesmane (6). These compounds were identified based on their NMR spectral data. The isolated compounds were tested for their cytotoxicity against liver cancer cell line (HepG2) and breast cancer cell line (MCF-7). Jaceidin flavonoid (4) exhibited the highest cytotoxic effect in vitro. Therefore, both of jaceidin and C. montanus extract were evaluated for their in vivo anti-tumor activity against Ehrlich's ascites carcinoma (EAC). Compared to control group, jaceidin and C. montanus extract decreased the tumor weight, improved the histological picture of tumor cells, lowered the levels of VEGF and ameliorate the oxidative stress. Molecular docking and in silico studies suggested that jaceidin was a selective inhibitor of VEGF-mediated angiogenesis with excellent membrane permeability and oral bioavailability.

19.
Front Pharmacol ; 11: 688, 2020.
Article En | MEDLINE | ID: mdl-32581778

Human neutrophil elastase (HNE) is a major cause of the destruction of tissues in cases of several different chronic andinflammatory diseases. Overexpression of the elastase enzyme plays a significant role in the pathogenesis of various diseases including chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome, rheumatoid arthritis, the rare disease cyclic hematopoiesis (or cyclic neutropenia), infections, sepsis, cystic fibrosis, myocardial ischemia/reperfusion injury and asthma, inflammation, and atherosclerosis. Human neutrophil elastase is secreted by human neutrophils due to different stimuli. Medicine-based inhibition of the over-activation of neutrophils or production and activity of elastase have been suggested to mend inflammatory diseases. Although the development of new elastase inhibitors is an essential strategy for treating the different inflammatory diseases, it has been a challenge to specifically target the activity of elastase because of its overlapping functions with those of other serine proteases. This review article highlights the reported natural polypeptides as potential inhibitors of elastase enzyme. The mechanism of action, structural features, and activity of the polypeptides have also been correlated wherever they were available.

20.
Redox Rep ; 25(1): 17-25, 2020 Dec.
Article En | MEDLINE | ID: mdl-32172678

Objectives: Hepatocellular carcinoma (HCC) is characterized by elevated in oxidative stress and inflammatory cytokines, which enhance destructive effects of the tumor. Therefore, we conducted this study to investigate the protective effects of sodium ascorbate against thioacetamide-induced HCC in rats through studying its effect on the apoptotic pathway in rats. In addition, in vitro activity of sodium ascorbate was investigated on HepG2 and compared with cisplatin.Methods: HCC was experimentally induced by injecting rats with 200 mg/kg thioacetamide intraperitoneally twice weekly for 16 weeks. Part of HCC rats was concomitantly treated with 100 mg/kg sodium ascorbate intraperitoneally during the 16-week period. Hepatic tissues were used for the determination of NFκB, Nrf2, TNF-α, caspase-3, caspase-8 and caspase-9.Results: Sodium ascorbate significantly attenuated HCC-induced reduction in the expression of NrF2 associated with a reduction in concentrations of hydrogen peroxide and superoxide anion. In addition, sodium ascorbate blocked HCC-induced increase in the expression of NFκB and TNF-α. Sodium ascorbate slightly increased the activity of caspase-3, -8 and -9 in vitro but inhibited their activities in vivo.Conclusion: In spite of the antioxidant and anti-inflammatory activity of sodium ascorbate, it produced selective cytotoxic activity via direct activation of the apoptotic pathway in cancer cells without affecting the apoptotic pathway in normal hepatic cells.


Antineoplastic Agents/pharmacology , Apoptosis , Ascorbic Acid/pharmacology , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms, Experimental/drug therapy , Oxidative Stress , Protective Agents/pharmacology , Animals , Antioxidants/pharmacology , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Hep G2 Cells , Humans , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Male , Rats , Rats, Sprague-Dawley , Thioacetamide/toxicity
...