Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
Nat Genet ; 55(12): 2189-2199, 2023 Dec.
Article En | MEDLINE | ID: mdl-37945900

Circular extrachromosomal DNA (ecDNA) in patient tumors is an important driver of oncogenic gene expression, evolution of drug resistance and poor patient outcomes. Applying computational methods for the detection and reconstruction of ecDNA across a retrospective cohort of 481 medulloblastoma tumors from 465 patients, we identify circular ecDNA in 82 patients (18%). Patients with ecDNA-positive medulloblastoma were more than twice as likely to relapse and three times as likely to die within 5 years of diagnosis. A subset of tumors harbored multiple ecDNA lineages, each containing distinct amplified oncogenes. Multimodal sequencing, imaging and CRISPR inhibition experiments in medulloblastoma models reveal intratumoral heterogeneity of ecDNA copy number per cell and frequent putative 'enhancer rewiring' events on ecDNA. This study reveals the frequency and diversity of ecDNA in medulloblastoma, stratified into molecular subgroups, and suggests copy number heterogeneity and enhancer rewiring as oncogenic features of ecDNA.


Cerebellar Neoplasms , Medulloblastoma , Neoplasms , Humans , DNA, Circular , Medulloblastoma/genetics , Retrospective Studies , Neoplasms/genetics , Oncogenes , Cerebellar Neoplasms/genetics
2.
Int J Biol Macromol ; 241: 124582, 2023 Jun 30.
Article En | MEDLINE | ID: mdl-37116843

In the past few decades, substantial advancement has been made in nucleic acid (NA)-based therapies. Promising treatments include mRNA, siRNA, miRNA, and anti-sense DNA for treating various clinical disorders by modifying the expression of DNA or RNA. However, their effectiveness is limited due to their concentrated negative charge, instability, large size, and host barriers, which make widespread application difficult. The effective delivery of these medicines requires safe vectors that are efficient & selective while having non-pathogenic qualities; thus, nanomaterials have become an attractive option with promising possibilities despite some potential setbacks. Nanomaterials possess ideal characteristics, allowing them to be tuned into functional bio-entity capable of targeted delivery. In this review, current breakthroughs in the non-viral strategy of delivering NAs are discussed with the goal of overcoming challenges that would otherwise be experienced by therapeutics. It offers insight into a wide variety of existing NA-based therapeutic modalities and techniques. In addition to this, it provides a rationale for the use of non-viral vectors and a variety of nanomaterials to accomplish efficient gene therapy. Further, it discusses the potential for biomedical application of nanomaterials-based gene therapy in various conditions, such as cancer therapy, tissue engineering, neurological disorders, and infections.


Genetic Therapy , Nanoparticle Drug Delivery System , Nanostructures , Nucleic Acids , Animals , Humans , Dendrimers/chemistry , Drug Stability , Genetic Therapy/methods , Hydrogels/chemistry , Liposomes/chemistry , Nanostructures/administration & dosage , Nanostructures/chemistry , Nanostructures/therapeutic use , Nucleic Acids/administration & dosage , Nucleic Acids/genetics , Nucleic Acids/metabolism , Nucleic Acids/therapeutic use , Transfection
3.
Int Immunopharmacol ; 117: 109945, 2023 Apr.
Article En | MEDLINE | ID: mdl-36871534

Local and systemic treatments exist for psoriasis, but none can do more than control its symptoms because of its numerous unknown mechanisms. The lack of validated testing models or a defined psoriatic phenotypic profile hinders antipsoriatic drug development. Despite their intricacy, immune-mediated diseases have no improved and precise treatment. The treatment actions may now be predicted for psoriasis and other chronic hyperproliferative skin illnesses using animal models. Their findings confirmed that a psoriasis animal model could mimic a few disease conditions. However, their ethical approval concerns and inability to resemble human psoriasis rightly offer to look for more alternatives. Hence, in this article, we have reported various cutting-edge techniques for the preclinical testing of pharmaceutical products for the treatment of psoriasis.


Dermatologic Agents , Psoriasis , Animals , Humans , Psoriasis/drug therapy , Skin , Models, Animal , Chronic Disease , Pharmaceutical Preparations , Disease Models, Animal
4.
Nature ; 600(7890): 731-736, 2021 12.
Article En | MEDLINE | ID: mdl-34819668

Extrachromosomal DNA (ecDNA) is prevalent in human cancers and mediates high expression of oncogenes through gene amplification and altered gene regulation1. Gene induction typically involves cis-regulatory elements that contact and activate genes on the same chromosome2,3. Here we show that ecDNA hubs-clusters of around 10-100 ecDNAs within the nucleus-enable intermolecular enhancer-gene interactions to promote oncogene overexpression. ecDNAs that encode multiple distinct oncogenes form hubs in diverse cancer cell types and primary tumours. Each ecDNA is more likely to transcribe the oncogene when spatially clustered with additional ecDNAs. ecDNA hubs are tethered by the bromodomain and extraterminal domain (BET) protein BRD4 in a MYC-amplified colorectal cancer cell line. The BET inhibitor JQ1 disperses ecDNA hubs and preferentially inhibits ecDNA-derived-oncogene transcription. The BRD4-bound PVT1 promoter is ectopically fused to MYC and duplicated in ecDNA, receiving promiscuous enhancer input to drive potent expression of MYC. Furthermore, the PVT1 promoter on an exogenous episome suffices to mediate gene activation in trans by ecDNA hubs in a JQ1-sensitive manner. Systematic silencing of ecDNA enhancers by CRISPR interference reveals intermolecular enhancer-gene activation among multiple oncogene loci that are amplified on distinct ecDNAs. Thus, protein-tethered ecDNA hubs enable intermolecular transcriptional regulation and may serve as units of oncogene function and cooperative evolution and as potential targets for cancer therapy.


Neoplasms , Nuclear Proteins , Azepines/pharmacology , Cell Cycle Proteins/genetics , Cell Line, Tumor , Gene Amplification , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/genetics , Nuclear Proteins/genetics , Oncogenes/genetics , Transcription Factors/genetics
6.
Blood ; 137(24): 3403-3415, 2021 06 17.
Article En | MEDLINE | ID: mdl-33690798

Leukemias bearing fusions of the AF10/MLLT10 gene are associated with poor prognosis, and therapies targeting these fusion proteins (FPs) are lacking. To understand mechanisms underlying AF10 fusion-mediated leukemogenesis, we generated inducible mouse models of acute myeloid leukemia (AML) driven by the most common AF10 FPs, PICALM/CALM-AF10 and KMT2A/MLL-AF10, and performed comprehensive characterization of the disease using transcriptomic, epigenomic, proteomic, and functional genomic approaches. Our studies provide a detailed map of gene networks and protein interactors associated with key AF10 fusions involved in leukemia. Specifically, we report that AF10 fusions activate a cascade of JAK/STAT-mediated inflammatory signaling through direct recruitment of JAK1 kinase. Inhibition of the JAK/STAT signaling by genetic Jak1 deletion or through pharmacological JAK/STAT inhibition elicited potent antioncogenic effects in mouse and human models of AF10 fusion AML. Collectively, our study identifies JAK1 as a tractable therapeutic target in AF10-rearranged leukemias.


Carcinogenesis , Gene Rearrangement , Janus Kinases , MAP Kinase Signaling System/genetics , Neoplasm Proteins , STAT Transcription Factors , Transcription Factors , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Female , Humans , Janus Kinases/genetics , Janus Kinases/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , U937 Cells
7.
Elife ; 92020 10 27.
Article En | MEDLINE | ID: mdl-33108271

Cell cycle is a cellular process that is subject to stringent control. In contrast to the wealth of knowledge of proteins controlling the cell cycle, very little is known about the molecular role of lncRNAs (long noncoding RNAs) in cell-cycle progression. By performing genome-wide transcriptome analyses in cell-cycle-synchronized cells, we observed cell-cycle phase-specific induction of >2000 lncRNAs. Further, we demonstrate that an S-phase-upregulated lncRNA, SUNO1, facilitates cell-cycle progression by promoting YAP1-mediated gene expression. SUNO1 facilitates the cell-cycle-specific transcription of WTIP, a positive regulator of YAP1, by promoting the co-activator, DDX5-mediated stabilization of RNA polymerase II on chromatin. Finally, elevated SUNO1 levels are associated with poor cancer prognosis and tumorigenicity, implying its pro-survival role. Thus, we demonstrate the role of a S-phase up-regulated lncRNA in cell-cycle progression via modulating the expression of genes controlling cell proliferation.


Cell Proliferation/genetics , Co-Repressor Proteins/genetics , Cytoskeletal Proteins/genetics , DEAD-box RNA Helicases/genetics , Gene Expression Regulation , RNA, Long Noncoding/genetics , Signal Transduction/physiology , Co-Repressor Proteins/metabolism , Cytoskeletal Proteins/metabolism , DEAD-box RNA Helicases/metabolism , HCT116 Cells , HeLa Cells , Humans , RNA, Long Noncoding/metabolism , S Phase , Up-Regulation
8.
Gastroenterology ; 159(5): 1882-1897.e5, 2020 11.
Article En | MEDLINE | ID: mdl-32768595

BACKGROUND & AIMS: Pancreatic ductal adenocarcinomas (PDACs) are hypovascular, resulting in the up-regulation of hypoxia inducible factor 1 alpha (HIF1A), which promotes the survival of cells under low-oxygen conditions. We studied the roles of HIF1A in the development of pancreatic tumors in mice. METHODS: We performed studies with KrasLSL-G12D/+;Trp53LSL-R172H/+;Pdx1-Cre (KPC) mice, KPC mice with labeled pancreatic epithelial cells (EKPC), and EKPC mice with pancreas-specific depletion of HIF1A. Pancreatic and other tissues were collected and analyzed by histology and immunohistochemistry. Cancer cells were cultured from PDACs from mice and analyzed in cell migration and invasion assays and by immunoblots, real-time polymerase chain reaction, and liquid chromatography-mass spectrometry. We performed studies with the human pancreatic cancer cell lines PATU-8988T, BxPC-3, PANC-1, and MiaPACA-2, which have no or low metastatic activity, and PATU-8988S, AsPC-1, SUIT-2 and Capan-1, which have high metastatic activity. Expression of genes was knocked down in primary cancer cells and pancreatic cancer cell lines by using small hairpin RNAs; cells were injected intravenously into immune-competent and NOD/SCID mice, and lung metastases were quantified. We compared levels of messenger RNAs in pancreatic tumors and normal pancreas in The Cancer Genome Atlas. RESULTS: EKPC mice with pancreas-specific deletion of HIF1A developed more advanced pancreatic neoplasias and PDACs with more invasion and metastasis, and had significantly shorter survival times, than EKPC mice. Pancreatic cancer cells from these tumors had higher invasive and metastatic activity in culture than cells from tumors of EKPC mice. HIF1A-knockout pancreatic cancer cells had increased expression of protein phosphatase 1 regulatory inhibitor subunit 1B (PPP1R1B). There was an inverse correlation between levels of HIF1A and PPP1R1B in human PDAC tumors; higher expression of PPP1R1B correlated with shorter survival times of patients. Metastatic human pancreatic cancer cell lines had increased levels of PPP1R1B and lower levels of HIF1A compared with nonmetastatic cancer cell lines; knockdown of PPP1R1B significantly reduced the ability of pancreatic cancer cells to form lung metastases in mice. PPP1R1B promoted degradation of p53 by stabilizing phosphorylation of MDM2 at Ser166. CONCLUSIONS: HIF1A can act a tumor suppressor by preventing the expression of PPP1R1B and subsequent degradation of the p53 protein in pancreatic cancer cells. Loss of HIF1A from pancreatic cancer cells increases their invasive and metastatic activity.


Carcinoma, Pancreatic Ductal/metabolism , Cell Movement , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lung Neoplasms/metabolism , Pancreatic Neoplasms/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/secondary , Cell Line, Tumor , Disease Models, Animal , Dopamine and cAMP-Regulated Phosphoprotein 32/genetics , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/deficiency , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Male , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Neoplasm Invasiveness , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proteolysis , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction , Trans-Activators/genetics , Trans-Activators/metabolism , Tumor Hypoxia , Tumor Microenvironment , Tumor Suppressor Protein p53/genetics , Up-Regulation
9.
J Exp Med ; 217(9)2020 09 07.
Article En | MEDLINE | ID: mdl-32510550

Tumor cells rely on glutamine to fulfill their metabolic demands and sustain proliferation. The elevated consumption of glutamine can lead to intratumoral nutrient depletion, causing metabolic stress that has the potential to impact tumor progression. Here, we show that nutrient stress caused by glutamine deprivation leads to the induction of epithelial-mesenchymal transition (EMT) in pancreatic ductal adenocarcinoma (PDAC) cells. Mechanistically, we demonstrate that glutamine deficiency regulates EMT through the up-regulation of the EMT master regulator Slug, a process that is dependent on both MEK/ERK signaling and ATF4. We find that Slug is required in PDAC cells for glutamine deprivation-induced EMT, cell motility, and nutrient stress survival. Importantly, we decipher that Slug is associated with nutrient stress in PDAC tumors and is required for metastasis. These results delineate a novel role for Slug in the nutrient stress response and provide insight into how nutrient depletion might influence PDAC progression.


Epithelial-Mesenchymal Transition , Glutamine/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Snail Family Transcription Factors/metabolism , Activating Transcription Factor 4/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Movement , Cell Survival , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , MAP Kinase Signaling System , Mice, Inbred C57BL , Neoplasm Metastasis , Pancreatic Neoplasms/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Snail Family Transcription Factors/genetics , Stress, Physiological
10.
Methods Mol Biol ; 1907: 197-212, 2019.
Article En | MEDLINE | ID: mdl-30543002

Over the last several decades, multiple recurrent chromosomal amplifications and deletions have been detected in a large number of cancers. These regions of amplification and deletion can encompass a few to several hundred genes. Determining which of these genes is causing the outgrowth of the cancer is difficult. Complicating the analysis is the fact that several genes within the affected chromosomal region may cooperate to promote tumorigenesis. In this protocol we describe a method of chromosomal engineering in mice that allows modeling of chromosomal duplications and deficiencies. This method faithfully recapitulates several aspects of chromosomal loss and gain in human cancers and can reveal cancer drivers difficult to identify by other means.


Chromosome Aberrations , Gene Targeting , Genetic Engineering/methods , Genomics/methods , Mouse Embryonic Stem Cells/metabolism , Neoplasm Proteins/genetics , Neoplasms/genetics , Animals , Humans , Integrases/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Neoplasms/pathology , Recombination, Genetic
11.
Sci Data ; 4: 170051, 2017 05 16.
Article En | MEDLINE | ID: mdl-29292796

Pain is a hallmark feature of sickle cell disease (SCD). Recurrent and unpredictable acute pain due to vaso-oclussive crises (VOC) is unique to SCD; and can be superimposed on chronic pain. To examine the mechanisms underlying pain in SCD, we performed RNA sequencing of dorsal root ganglion (DRG) of transgenic sickle mice and their age-matched control mice expressing normal human hemoglobin A, at 2 and 5 months of age. Sickle and control mice of both ages were equally divided into hypoxia/reoxygenation (to simulate VOC) and normoxia treatment, resulting in eight groups of mice. Each group had at least six mice. RNA isolated from the DRG was sequenced and paired-end 50 bp sequencing data were generated using Illumina's HiSeq 2000. This large dataset can serve as a resource for examining transcriptional changes in the DRG that are associated with age and hypoxia/reoxygenation associated signatures of nociceptive mechanisms underlying chronic and acute pain, respectively.


Anemia, Sickle Cell/physiopathology , Ganglia, Spinal , Gene Expression Profiling , Pain/genetics , Anemia, Sickle Cell/genetics , Animals , Humans , Mice , Mice, Transgenic , RNA/genetics
12.
J Orthop Res ; 35(8): 1671-1682, 2017 08.
Article En | MEDLINE | ID: mdl-27769098

Increasing evidence supports the idea that bone morphogenetic proteins (BMPs) regulate cartilage maintenance in the adult skeleton. The aim of this study is to obtain insight into the regulation of BMP activities in the adult skeletal system. We analyzed expression of Noggin and Gremlin1, BMP antagonists that are known to regulate embryonic skeletal development, in the adult skeletal system by Noggin-LacZ and Gremlin1-LacZ knockin reporter mouse lines. Both reporters are expressed in the adult skeleton in a largely overlapping manner with some distinct patterns. Both are detected in the articular cartilage, pubic symphysis, facet joint in the vertebrae, and intervertebral disk, suggesting that they regulate BMP activities in these tissues. In a surgically induced knee osteoarthritis model in mice, expression of Noggin mRNA was lost from the articular cartilage, which correlated with loss of BMP2/4 and pSMAD1/5/8, an indicator of active BMP signaling. Both reporters are also expressed in the sterna and rib cartilage, suggesting an extensive role of BMP antagonism in adult cartilage tissue. Moreover, Noggin-LacZ was detected in sutures in the skull and broadly in the nasal cartilage, while Gremlin1-LacZ exhibits a weaker and more restricted expression domain in the nasal cartilage. These results suggest broad regulation of BMP activities by Noggin and Gremlin1 in cartilage tissues in the adult skeleton, and that BMP signaling and its antagonism by NOGGIN play a role in osteoarthritis development. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1671-1682, 2017.


Bone Morphogenetic Proteins/metabolism , Bone and Bones/metabolism , Carrier Proteins/metabolism , Cartilage, Articular/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Animals , Arthritis, Experimental/metabolism , Genes, Reporter , Joints/metabolism , Lac Operon , Mice, Transgenic , Osteoarthritis/metabolism
13.
Cell Cycle ; 15(7): 881-5, 2016.
Article En | MEDLINE | ID: mdl-26889781

Copy number gain of the 8q24 region including the v-myc avian myelocytomatosis viral oncogene homolog (MYC) oncogene has been observed in many different cancers and is associated with poor outcomes. While the role of MYC in tumor formation has been clearly delineated, we have recently shown that co-operation between adjacent long non-coding RNA plasmacytoma variant transcription 1 (PVT1) and MYC is necessary for tumor promotion. Chromosome engineered mice containing an increased copy of Myc-Pvt1 (Gain Myc-Pvt1) accelerates mammary tumors in MMTV-Neu mice, while single copy increase of each is not sufficient. In addition, mammary epithelium from the Gain Myc-Pvt1 mouse show precancerous phenotypes, notably increased DNA replication, elevated -H2AX phosphorylation and increased ductal branching. In an attempt to capture the molecular signatures in pre-cancerous cells we utilized RNA sequencing to identify potential targets of supernumerary Myc-Pvt1 cooperation in mammary epithelial cells. In this extra view we show that an extra copy of both Myc and Pvt1 leads to increased levels of Rspo1, a crucial regulator of canonical ß-catenin signaling required for female development. Human breast cancer tumors with high levels of MYC transcript have significantly more PVT1 transcript and RSPO1 transcript than tumors with low levels of MYC showing that the murine results are relevant to a subset of human tumors. Thus, this work identifies a key mechanism in precancerous and cancerous tissue by which a main player in female differentiation is transcriptionally activated by supernumerary MYC and PVT1, leading to increased premalignant features, and ultimately to tumor formation.


Breast Neoplasms/genetics , Chromosomes, Human, Pair 8 , Animals , Cell Transformation, Neoplastic/genetics , Genes, myc , Humans , RNA, Long Noncoding/genetics , beta Catenin/genetics
14.
Mol Cell Oncol ; 2(2): e974467, 2015.
Article En | MEDLINE | ID: mdl-27308428

Gain of 8q24, harboring the avian myelocytomatosis viral oncogene homolog (MYC), is a frequent mutation in cancers. Although MYC is the usual suspect in these cancers, the role of other co-gained loci remains mostly unknown. We have recently found that MYC partners with the adjacent long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1), which stabilizes MYC protein and potentiates its activity.

15.
Nature ; 512(7512): 82-6, 2014 Aug 07.
Article En | MEDLINE | ID: mdl-25043044

'Gain' of supernumerary copies of the 8q24.21 chromosomal region has been shown to be common in many human cancers and is associated with poor prognosis. The well-characterized myelocytomatosis (MYC) oncogene resides in the 8q24.21 region and is consistently co-gained with an adjacent 'gene desert' of approximately 2 megabases that contains the long non-coding RNA gene PVT1, the CCDC26 gene candidate and the GSDMC gene. Whether low copy-number gain of one or more of these genes drives neoplasia is not known. Here we use chromosome engineering in mice to show that a single extra copy of either the Myc gene or the region encompassing Pvt1, Ccdc26 and Gsdmc fails to advance cancer measurably, whereas a single supernumerary segment encompassing all four genes successfully promotes cancer. Gain of PVT1 long non-coding RNA expression was required for high MYC protein levels in 8q24-amplified human cancer cells. PVT1 RNA and MYC protein expression correlated in primary human tumours, and copy number of PVT1 was co-increased in more than 98% of MYC-copy-increase cancers. Ablation of PVT1 from MYC-driven colon cancer line HCT116 diminished its tumorigenic potency. As MYC protein has been refractory to small-molecule inhibition, the dependence of high MYC protein levels on PVT1 long non-coding RNA provides a much needed therapeutic target.


DNA Copy Number Variations/genetics , Gene Amplification/genetics , Gene Dosage/genetics , Genes, myc/genetics , Oncogene Protein p55(v-myc)/genetics , RNA, Long Noncoding/genetics , Animals , Cell Transformation, Neoplastic , Chromosomes, Human, Pair 8/genetics , Disease Models, Animal , HCT116 Cells , Humans , Mice , Mice, Inbred C57BL , Oncogene Protein p55(v-myc)/metabolism , Phenotype
16.
BMC Vet Res ; 10: 20, 2014 Jan 14.
Article En | MEDLINE | ID: mdl-24423165

BACKGROUND: Enzymatic activity of Telomerase Reverse Transcriptase (TERT) is important in maintaining the telomere length and has been implicated in cancer and aging related pathology. Since cancer susceptibility as well as longevity of dogs vary between breeds, this study involved sequencing the entire TERT gene of Canis familiaris from DNA samples obtained from forty dogs, with ten dogs each of four breeds: Shih Tzu, Dachshund, Irish Wolfhound, and Newfoundland, each with different life expectancies and susceptibility to cancer. RESULTS: We compared the sequences of all forty individuals amongst one another and with the published sequence of canine TERT, and analyzed relationships between members of the same or different breeds. Two separate phylogenetic trees were generated and analyzed from these individuals. Polymorphisms were found most frequently in intronic regions of the gene, although exonic polymorphisms also were observed. In many locations genotypes were observed that were either homozygous for the reference sequence or heterozygous, but the variant homozygous genotype was not observed. CONCLUSIONS: We propose that these homozygous variants are likely to have adverse effects in dogs. It was also found that the polymorphisms did not segregate by breed. Because the four breeds chosen come from geographically and physiologically distinct backgrounds, it can be inferred that the polymorphic diversification of TERT preceded breed derivation.


Dog Diseases/genetics , Dogs/genetics , Longevity/genetics , Neoplasms/veterinary , Polymorphism, Genetic/physiology , Telomerase/metabolism , Animals , Gene Expression Regulation, Enzymologic , Genetic Predisposition to Disease , Neoplasms/genetics , Telomerase/genetics
17.
Dev Biol ; 355(1): 21-31, 2011 Jul 01.
Article En | MEDLINE | ID: mdl-21549111

The severity of numerous developmental abnormalities can vary widely despite shared genetic causes. Mice deficient in Twisted gastrulation (Twsg1(-/-)) display such phenotypic variation, developing a wide range of craniofacial malformations on an isogenic C57BL/6 strain background. To examine the molecular basis for this reduced penetrance and variable expressivity, we used exon microarrays to analyze gene expression in mandibular arches from several distinct, morphologically defined classes of Twsg1(-/-) and wild type (WT) embryos. Hierarchical clustering analysis of transcript levels identified numerous differentially expressed genes, clearly distinguishing severely affected and unaffected Twsg1(-/-) mutants from WT embryos. Several genes that play well-known roles in craniofacial development were upregulated in unaffected Twsg1(-/-) mutant embryos, suggesting that they may compensate for the loss of TWSG1. Imprinted genes were overrepresented among genes that were differentially expressed particularly between affected and unaffected mutants. The most severely affected embryos demonstrated increased p53 signaling and increased expression of its target, Trp53inp1. The frequency of craniofacial defects significantly decreased with a reduction of p53 gene dosage from 44% in Twsg1(-/-)p53(+/+) pups (N=675) to 30% in Twsg1(-/-)p53(+/-) (N=47, p=0.04) and 15% in Twsg1(-/-)p53(-/-) littermates (N=39, p=0.001). In summary, these results demonstrate that phenotypic variability in Twsg1(-/-) mice is associated with differential expression of certain developmentally regulated genes, and that craniofacial defects can be partially rescued by reduced p53 levels. We postulate that variable responses to stress may contribute to variable craniofacial phenotypes by triggering differential expression of genes and variable cellular apoptosis.


Craniofacial Abnormalities/genetics , Proteins/genetics , Animals , Exons , Gene Expression Regulation, Developmental , Genomic Imprinting , Mice , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Phenotype , Signal Transduction , Tumor Suppressor Protein p53/genetics
18.
Nat Cell Biol ; 12(11): 1108-14, 2010 Nov.
Article En | MEDLINE | ID: mdl-20935635

The Polycomb group (PcG) protein, enhancer of zeste homologue 2 (EZH2), has an essential role in promoting histone H3 lysine 27 trimethylation (H3K27me3) and epigenetic gene silencing. This function of EZH2 is important for cell proliferation and inhibition of cell differentiation, and is implicated in cancer progression. Here, we demonstrate that under physiological conditions, cyclin-dependent kinase 1 (CDK1) and cyclin-dependent kinase 2 (CDK2) phosphorylate EZH2 at Thr 350 in an evolutionarily conserved motif. Phosphorylation of Thr 350 is important for recruitment of EZH2 and maintenance of H3K27me3 levels at EZH2-target loci. Blockage of Thr 350 phosphorylation not only diminishes the global effect of EZH2 on gene silencing, it also mitigates EZH2-mediated cell proliferation and migration. These results demonstrate that CDK-mediated phosphorylation is a key mechanism governing EZH2 function and that there is a link between the cell-cycle machinery and epigenetic gene silencing.


CDC2 Protein Kinase/metabolism , Cyclin-Dependent Kinase 2/metabolism , DNA-Binding Proteins/metabolism , Epigenesis, Genetic/genetics , Transcription Factors/metabolism , CDC2 Protein Kinase/genetics , Cyclin-Dependent Kinase 2/genetics , DNA-Binding Proteins/genetics , Enhancer of Zeste Homolog 2 Protein , Gene Silencing , HEK293 Cells , Humans , Phosphorylation , Polycomb Repressive Complex 2 , Transcription Factors/genetics , Tumor Cells, Cultured
19.
Nat Genet ; 40(6): 751-60, 2008 Jun.
Article En | MEDLINE | ID: mdl-18469815

Individuals with 22q11.2 microdeletions show behavioral and cognitive deficits and are at high risk of developing schizophrenia. We analyzed an engineered mouse strain carrying a chromosomal deficiency spanning a segment syntenic to the human 22q11.2 locus. We uncovered a previously unknown alteration in the biogenesis of microRNAs (miRNAs) and identified a subset of brain miRNAs affected by the microdeletion. We provide evidence that the abnormal miRNA biogenesis emerges because of haploinsufficiency of the Dgcr8 gene, which encodes an RNA-binding moiety of the 'microprocessor' complex and contributes to the behavioral and neuronal deficits associated with the 22q11.2 microdeletion.


Behavior, Animal/physiology , Brain/physiology , Chromosome Deletion , Chromosomes, Human, Pair 22/genetics , Disease Models, Animal , MicroRNAs/biosynthesis , MicroRNAs/genetics , Animals , Cognition Disorders/genetics , Female , Gene Expression Profiling , Habituation, Psychophysiologic/genetics , Heterozygote , Humans , Learning Disabilities/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Phenotype , Proteins/physiology , RNA-Binding Proteins , Sensation Disorders/genetics , Spine/anatomy & histology , Spine/growth & development
20.
Cancer Res ; 68(8): 2551-6, 2008 Apr 15.
Article En | MEDLINE | ID: mdl-18413720

Genomic analyses of late-stage human cancers have uncovered deletions encompassing 1p36, thereby providing an extensive body of literature supporting the idea that a potent tumor suppressor resides in this interval. Although several genes have been proposed as 1p36 candidate tumor suppressors, convincing evidence that their encoded products protect from cancer has been scanty. A recent functional study identified chromodomain helicase DNA-binding protein 5 (CHD5) as a novel tumor suppressor mapping to 1p36. Here, we discuss evidence supporting the tumor-suppressive role of CHD5. Together, these findings suggest that strategies designed to enhance CHD5 activity could provide novel approaches for treating a broad range of human malignancies.


Chromosome Mapping , Chromosomes, Human, Pair 1 , Genes, Tumor Suppressor , Neoplasms/genetics , Neoplasms/prevention & control , Chromatin/genetics , DNA Helicases/genetics , Gene Deletion , Humans , Mutation , Nerve Tissue Proteins/genetics , Sequence Deletion
...