Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Radiol Phys Technol ; 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822972

Proton dose calculation in media other than water may be of interest for either research purposes or clinical practice. Current study aims to quantify the required parameters for analytical proton dosimetry in muscle, bone, and PMMA. Required analytical dosimetry parameters were extracted from ICRU-49 report and Janni study. Geant4 Toolkit was also used for Bragg curve simulation inside the investigated media at different proton energies. Calculated and simulated dosimetry data were compared using gamma analysis. Simulated and calculated Bragg curves are consistent, a fact that confirms the validity of reported parameters for analytical proton dosimetry inside considered media. Furthermore, derived analytical parameters for these media are different from those of water. Listed parameters can be reliably utilized for analytical proton dosimetry inside muscle, bone, and PMMA. Furthermore, accurate proton dosimetry inside each medium demands dedicated analytical parameters and one is not allowed to use the water coefficients for non-water media.

2.
J Appl Clin Med Phys ; : e14399, 2024 May 20.
Article En | MEDLINE | ID: mdl-38767333

PURPOSE: Neutron capture therapy (NCT) by 10B and 157Gd agents is a unique irradiation-based method which can be used to treat brain tumors. Current study aims to quantitatively evaluate the relative biological effectiveness (RBE) and dose distributions during the combined BNCT and GdNCT modalities through a hybrid Monte Carlo (MC) simulation approach. METHODS: Snyder head phantom as well as a cubic hypothetical tumor was at first modeled by Geant4 MC Code. Then, the energy spectra and dose distribution relevant to the released secondary particles during the combined Gd/BNCT were scored for different concentrations of 157Gd and 10B inside tumor volume. Finally, the scored energy spectra were imported to the MCDS code to estimate both RBESSB and RBEDSB values for different 157Gd concentrations. RESULTS: The results showed that combined Gd/BNCT increases the fluence-averaged RBESSB values by about 1.7 times when 157Gd concentration increments from 0 to 2000 µg/g for both considered cell oxygen levels (pO2 = 10% and 100%). Besides, a reduction of about 26% was found for fluence-averaged RBEDSB values with an increment of 157Gd concentration in tumor volume. CONCLUSION: From the results, it can be concluded that combined Gd/BNCT technique can improve tumor coverage with higher dose levels but in the expense of RBEDSB reduction which can affect the clinical efficacy of the NCT technique.

3.
Radiat Environ Biophys ; 63(1): 27-37, 2024 Mar.
Article En | MEDLINE | ID: mdl-38185693

This study aimed to estimate lung and breast doses for individual patients using the size-specific dose estimate (SSDE) method, as well as calculating effective doses, in patients who underwent chest CT scans during the COVID-19 pandemic. Cancer risk incidence was estimated using excess relative risk (ERR), excess absolute risk (EAR), and lifetime attributable risk (LAR) models from the Biological Effects of Ionizing Radiation Report VII (BEIR-VII). Data from about 570 patients who underwent CT scans for COVID-19 screening were utilized for this study. Using the header of the CT images in a Python script, SSDE and effective dose were calculated for each patient. The SSDE obtained by water equivalent effective diameter (wSSDE) was considered as lung and breast dose, and applied in organ-specific cancer risk estimation. The mean wSSDE value for females (13.3 mGy) was slightly higher than that for males (13.1 mGy), but the difference was not statistically significant (P value = 0.41). No significant differences were observed between males and females in terms of calculated EAR and ERR for lung cancer at 5 and 30 years after exposure (P value = 0.47, 0.46, respectively). Similarly, there was no significant difference in lung cancer LAR values between females and males (P value = 0.48). The results also indicated a decrease in LAR values for both lung and breast cancers with increasing exposure age. In accordance with the ALARA (as low as reasonably achievable) principle, it is important for medical staff and the general public to consider the benefits of CT imaging in detecting such infections. Additionally, imaging medical physicists and CT scan experts should optimize imaging protocols and strike a balance between image quality for detecting abnormalities and radiation dose, all while adhering to the ALARA principle.


Breast Neoplasms , COVID-19 , Lung Neoplasms , Male , Female , Humans , Radiation Dosage , Pandemics , COVID-19/epidemiology , COVID-19/etiology , Tomography, X-Ray Computed/adverse effects , Risk Factors , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Lung Neoplasms/etiology
4.
Int J Radiat Biol ; : 1-10, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38166191

INTRODUCTION: The need for accurate relative biological effectiveness (RBE) estimation for low energy therapeutic X-rays (corresponding to 50 kV nominal energy of a commercial low-energy IORT system (INTRABEAM)) is a crucial issue due to increased radiobiological effects, respect to high energy photons. Modeling of radiation-induced DNA damage through Monte Carlo (MC) simulation approaches can give useful information. Hence, this study aimed to evaluate and compare RBE of low energy therapeutic X-rays using Geant4-DNA toolkit and Monte Carlo damage simulation (MCDS) code. MATERIALS AND METHODS: RBE calculations were performed considering the emitted secondary electron spectra through interactions of low energy X-rays inside the medium. In Geant4-DNA, the DNA strand breaks were obtained by employing a B-DNA model in physical stage with 10.79 eV energy-threshold and the probability of hydroxyl radical's chemical reactions of about 0.13%. Furthermore, RBE estimations by MCDS code were performed under fully aerobic conditions. RESULTS: Acquired results by two considered MC codes showed that the same trend is found for RBEDSB and RBESSB variations. Totally, a reasonable agreement between the calculated RBE values (both RBESSB and RBEDSB) existed between the two considered MC codes. The mean differences of 9.2% and 1.8% were obtained between the estimated RBESSB and RBEDSB values by two codes, respectively. CONCLUSION: Based on the obtained results, it can be concluded that a tolerable accordance is found between the calculated RBEDSB values through MCDS and Geant4-DNA, a fact which appropriates both codes for RBE evaluations of low energy therapeutic X-rays, especially in the case of RBEDSB where lethal damages are regarded.

5.
Int J Radiat Biol ; 100(1): 46-60, 2024.
Article En | MEDLINE | ID: mdl-37523649

PURPOSE: Employing electron beam for radiotherapy purposes now has been established as one of the standard cancer treatment modalities. Both dedicated intraoperative and conventional electron beams can be employed in patient irradiation. Due to the differences between accelerating structure and electron beam delivery of dedicated intraoperative radiotherapy (IORT) machines and conventional ones, the initial energy spectra of the produced electron beam by these machines may be different. Accordingly, this study aims to evaluate whether these spectral differences can affect the relevant relative biological effectiveness (RBE) values of intraoperative and conventional electron beams. MATERIALS AND METHODS: A hybrid Monte Carlo simulation approach was considered. At first, the head LIAC12 machine (as an IORT accelerator) and Varian 2100C/D (as a conventional accelerator) were simulated by MCNPX code and electron energy spectra at different depths and off-axis distances were scored for two nominal electron energies of 6 and 12 MeV at the field sizes of 6 and 10 cm. Then, the calculated spectra were imported to MCDS code to estimate the induced DNA-damage RBE values. Finally, the obtained RBE values for intraoperative and conventional electron beams were compared together. RESULTS: The results showed that the RBE values of the intraoperative electron beam are superior to those obtained for conventional electron beam at the same energy/field size combination. Variations of the depth can regularly affect the RBE value for both conventional and intraoperative electron beams, while no ordered variation trend was observed for RBE with changing the off-axis distance. Variations of electron energy and field size can also influence the RBE value for both types of studied electron beams. CONCLUSIONS: From the results, it can be concluded the structural differences between the dedicated IORT and conventional Linacs can lead to distinct initial electron energy spectra for intraoperative and conventional electron beams. These physical differences can finally lead to different RBE values for intraoperative and conventional electron beams at the same energy and field size.


Electrons , Neoplasms , Humans , Relative Biological Effectiveness , Computer Simulation , DNA , Monte Carlo Method , Radiometry/methods
6.
Appl Radiat Isot ; 204: 111117, 2024 Feb.
Article En | MEDLINE | ID: mdl-38007882

Brachytherapy of superficial skin tumors using beta-emitting sources is a method that has been investigated by some researchers in both simulation and experimental studies with promising results. In the current study, the effect of geometrical parameters of some relevant radionuclides including Y-90, Re-188, P-32, and Ho-166 on the depth dose distribution in skin tissue has been investigated through Monte Carlo simulation. MCNPX Monte Carlo code was employed to model the above-mentioned patch sources in cylindrical format and then the effect of patch geometrical parameters including the source-to-skin distance (SSD), patch thickness, and patch diameter on depth dose distribution was assessed through modeling and calculation of the dose inside a cubic phantom mimicking the skin tissue. The obtained results demonstrated that increasing the SSD, patch thickness, and patch diameter (with the same activity) will reduce the depth dose distribution. Changing the SSD has a more significant effect on the dose gradient within the depth than other geometrical parameters. It was also observed that the effect of patch diameter on the skin-delivered dose gets less sensible as the patch size goes beyond the range of beta radiation inside tissue. Finally, it can be concluded that the patch source geometrical parameters can affect the depth dose distribution inside the skin tissue. This fact may be of concern regarding the delivery of a high radiation dose in a single treatment session. Therefore, variations of patch source geometrical parameters should be considered during the skin dose calculation plan.


Brachytherapy , Rhenium , Brachytherapy/methods , Yttrium Radioisotopes , Monte Carlo Method , Radiotherapy Dosage , Radiometry/methods
7.
Radiol Phys Technol ; 17(1): 135-142, 2024 Mar.
Article En | MEDLINE | ID: mdl-37989987

Neutron capture therapy (NCT) with various concentrations of gadolinium (157Gd) is one of the treatment modalities for glioblastoma (GBM) tumors. Current study aims to evaluate how variations of 157Gd concentration and cell oxygen levels can affect the relative biological effectiveness (RBE) of gadolinium neutron capture therapy (GdNCT) technique through a hybrid Monte Carlo (MC) simulation approach. At first, Snyder phantom including a spherical tumor was simulated by Geant4 MC code and relevant energy electron spectra to different 157Gd concentrations including 100, 250, 500, and 1000 ppm were calculated following the neutron irradiation of simulated phantom. Scored energy electron spectra were then imported to Monte Carlo damage simulation (MCDS) code to estimate RBE values (both RBESSB and RBEDSB) at different gadolinium concentrations and oxygen levels from 10 to 100%. The results indicate that variations of 157Gd can affect the energy spectrum of released secondary electrons including Auger electrons. Variation of gadolinium concentration from 100 to 1000 ppm in tumor region can change RBESSB and RBEDSB values by about 0.1% and 0.5%, respectively. Besides, maximum variations of 4.3% and 2% were calculated for RBEDSB and RBESSB when cell oxygen level changed from 10 to 100%. From the results, variations of considered gadolinium and oxygen concentrations during GdNCT can influence RBE values. Nevertheless, due to the not remarkable changes in the intensity of Auger electrons, a slight difference in RBE values would be expected at various 157Gd concentrations, although considerable RBE changes were calculated relevant to the oxygen alternations inside tumor tissue.


Brain Neoplasms , Neutron Capture Therapy , Humans , Gadolinium , Brain Neoplasms/radiotherapy , Brain Neoplasms/pathology , Neutron Capture Therapy/methods , Relative Biological Effectiveness , Radiotherapy Dosage , Monte Carlo Method
8.
J Appl Clin Med Phys ; 24(11): e14098, 2023 Nov.
Article En | MEDLINE | ID: mdl-37461859

BACKGROUND AND OBJECTIVE: Avoiding the underlying healthy tissue over-exposure during breast intraoperative electron radiotherapy (IOERT) is owing to the use of some dedicated radioprotection disks during patient irradiation. The originated contaminant photons from some widely used double-layered shielding disks including PMMA+Cu, PTFE+steel, and Al+Pb configurations during the breast IOERT have been evaluated through a Monte Carlo (MC) simulation approach. METHODS: Produced electron beam with energies of 6, 8, 10, and 12 MeV by a validated MC model of Liac12 dedicated IOERT accelerator was used for disk irradiations. Each of above-mentioned radioprotection disks was simulated inside a water phantom, so that the upper disk surface was positioned at R90 depth of each considered electron energy. Simulations were performed by MCNPX (version 2.6.0) MC code. Then, the energy spectra of the contaminant photons at different disk surfaces (upper, middle, and lower one) and relevant contaminant dose beneath the studied disks were determined and compared. RESULTS: None of studied shielding disks show significant photon contamination up to 10 MeV electron energy, so that the induced photon dose by the contaminant X-rays was lower than those observed in the disk absence under the same conditions. In return, the induced photon dose at a close distance to the lower disk surface exceeded from calculated values in the disk absence at 12 MeV electron energy. The best performance in contaminant dose reduction at the energy range of 6-10 MeV belonged to the Al+Pb disk, while the PMMA+Cu configuration showed the best performance in this regard at 12 MeV energy. CONCLUSION: Finally, it can be concluded that all studied shielding disks not only don't produce considerable photon contamination but also absorb the originated X-rays from electron interactions with water at the electron energy range of 6-10 MeV. The only concern is related to 12 MeV energy where the induced photon dose exceeds the dose values in the disk absence. Nevertheless, the administered dose by contaminant photons to underlying healthy tissues remains beneath the tolerance dose level by these organs at the entire range of studied electron energies.


Electrons , Lead , Humans , Monte Carlo Method , Polymethyl Methacrylate , Photons , Water , Radiometry , Radiotherapy Dosage
9.
Appl Radiat Isot ; 197: 110796, 2023 Jul.
Article En | MEDLINE | ID: mdl-37037135

In this study, ion recombination correction factor (kS) and beam quality conversion factor ( [Formula: see text] ) values were extracted following the recommendations of the TRS-398 and TG-51 dosimetry protocols for widely used cylindrical ionization chambers for high energy photon beam dosimetry to quantify the agreement between the instructions for these two protocols for absolute dosimetry inside water. Four different types of cylindrical ionization chambers comprising Farmer (TM30013), Semiflex 0.125 cm3 (TM31010), Semiflex 0.3 cm3 (TM31013), and PinPoint (TM31016) were considered, and kS and [Formula: see text] values were determined at photon energies of 6 MV and 15 MV. The maximum difference between the measured kS values according to the instructions in the TRS-398 and TG-51 protocols was 0.03%. The kS data measured with both protocols agreed well with those measured by using the Jaffe-plot approach, where the maximum difference was about 0.33%. The observed differences between the [Formula: see text] factors measured by using the TRS-398 and TG-51 dosimetry protocols at photon energies of 6 MV and 15 MV were 0.37% and 0.55%, respectively. The [Formula: see text] values measured using the TG-51 dosimetry protocols were slightly closer to those measured by a reference ionization chamber dosimeter. We conclude that the maximum differences were about 0.4% and 0.6% in the absorbed dose measurements according to the TRS-398 and TG-51 instructions at photon energies of 6 MV and 15 MV, respectively. The type of ionization chamber employed also affected the differences, where the maximum and minimum dose differences were found using the Farmer and PinPoint chambers, respectively.

10.
Phys Eng Sci Med ; 46(1): 185-195, 2023 Mar.
Article En | MEDLINE | ID: mdl-36593380

Ionometric electron dosimetry inside water-equivalent plastic phantoms demands special considerations including determination of depth scaling and fluence scaling factors (cpl and hpl) to shift from in-phantom measurements to those relevant to water. This study evaluates these scaling factors for RW3 slab phantom and also introduces a new coefficient, k(RW3), for direct conversion from RW3 measurements to water without involving scaling factors. The RW3 solid phantom developed by the PTW Company was used and the corresponding scaling factors including cpl, hpl, and k(RW3) were measured for conventional electron energies of 4, 6, 9, 12, and 16 MeV. Separate measurements were performed in water and the RW3 slab phantom using the Advanced Markus chamber. The validity of the reported scaling factors was confirmed by comparing the direct and indirect percentage depth dose (PDD) measurements in water and in the RW3 phantom. The cpl values for the RW3 phantom were respectively equal to 0.915, 0.927, 0.934, 0.937, and 0.937 for 4, 6, 9, 12, and 16 MeV electron energies. The hpl and k(RW3) values were dependent on the depth of investigation and electron energy. Application of the cpl-hpl factors and k(RW3) coefficients to measured data inside the RW3 can reliably reproduce the measured PDD curves in water. The mean difference between the PDDs measured directly and indirectly in water and in the RW3 phantom was less than 1.2% in both approaches for PDD conversion (cpl-hpl coupling and the use of k(RW3)). The measured scaling factors and k(RW3) coefficients are sufficiently relevant to mimic water-based dosimetry results through indirect measurements inside the RW3 slab phantom. Nevertheless, employing k(RW3) is more straightforward than the cpl-hpl approach because it does not involve scaling and it is also less time-consuming.


Electrons , Plastics , Radiometry , Radiotherapy Dosage , Water
11.
Med Biol Eng Comput ; 61(2): 435-444, 2023 Feb.
Article En | MEDLINE | ID: mdl-36460872

A buildup bolus is used during the post-mastectomy radiotherapy (PMRT) to overcome under-dosage issues in the chest wall. The current study is aimed at evaluating the performance of a bolus in dose enhancement through both film dosimetry and treatment planning approaches. Twenty patients were enrolled in current research. The received dose by the skin at the lateral and medial regions of the chest wall in the presence and absence bolus was evaluated. Film dosimetry results showed that the presence of the bolus can averagely increase the skin dose by about 80% (P value < 0.001) and 92% (P value < 0.001) in lateral and medial regions, respectively. No significant difference was observed between the measured and treatment planning system (TPS)-calculated dose values in the presence of bolus. The presence of the bolus can considerably increase the absorbed dose by superficial chest wall regions. The TPS shows a favorable performance in superficial dose calculations in the presence of the buildup bolus. Hosseini et al.: demonstration of implemented research in the current study.


Breast Neoplasms , Film Dosimetry , Humans , Female , Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Mastectomy , Radiotherapy Planning, Computer-Assisted , Skin , Radiotherapy Dosage
12.
Comput Methods Programs Biomed ; 224: 107000, 2022 Sep.
Article En | MEDLINE | ID: mdl-35810506

BACKGROUND AND OBJECTIVE: One of the principal deficits of TG-43(U1) dosimetry protocol is ignoring the attenuation effect of each seed during the multiseed brachytherapy implants. To take into account this shadowing effect, a parameter known as the inter-seed effect (ISE) has been introduced. Current study aims to evaluate and compare the ISE for some I-125 brachytherapy seeds through a Monte Carlo (MC) simulation approach. METHODS: Five different models of I-125 seeds including 6711, ProstaSeed, STM 1251, 3500, and IAI-125A were simulated by MCNPX MC Code. Validity of simulated seed models was confirmed through comparing the corresponding dosimetric parameters such as radial dose function and anisotropy function with those reported by relevant literature. Then, the ISE for each seed at different distances was determined in three seeds implant configuration. Additionally, the relevant attenuation factors (AF) were also determined for each brachytherapy source. RESULTS: The obtained results demonstrated that minimum inter-seed attenuation belongs to the ProstaSeed. In return, the maximum inter-seed attenuation was found for 3500 brachytherapy seed. The mean attenuation factor for 6711, ProstaSeed, STM 1251, 3500, and IAI-125A seed models was equal to 0.764, 0.829, 0.785, 0.594, and 0.772, respectively. CONCLUSIONS: It can be concluded that the considered I-125 brachytherapy seeds show different inter-seed effects and mean AF values for the same multiseed implant arrangement. This finding can be attributed to discrepancies in internal seed design and configuration.


Brachytherapy , Anisotropy , Brachytherapy/methods , Iodine Radioisotopes/therapeutic use , Monte Carlo Method , Radiometry , Radiotherapy Dosage
13.
Radiat Environ Biophys ; 61(2): 301-307, 2022 05.
Article En | MEDLINE | ID: mdl-35171318

This study aimed to evaluate the ambient dose equivalent around a C-arm device during spinal surgeries and determine the optimum locations for the surgeon and staff to keep radiation exposure as low as reasonably achievable. Furthermore, cancer risk incidence was estimated using the excess relative risk (ERR) concept of the biologic effects of ionizing radiation VII report for operating room (OR) staff. A lateral projection of the C-arm setup was considered in the current study. The ambient dose equivalent rate was measured using an electronic dosimeter in 30° steps all around for 1, and 1.6-m heights as well as 1, and 2-m distances away from a water tank (scattering medium). By assuming a typical workload, the annual ambient dose and a maximum number of permissible operations were determined. For a worst-case scenario, the dose was used to estimate the ERR for various organs including prostate, ovary, breast, lung, thyroid, and colon for attained ages of 35, 40, and 50 years. The maximum ambient dose equivalent rate was seen at 330° and 30° (about 600 µSv/h at 1 m height and a distance of 1 m from the scattering medium). The corresponding permissible workload for an OR staff was about 30,660 operations. Based on the obtained results, 60° next to the image intensifier was the optimum position for the surgeon, while 30° next to the tube was the worst position because of backscattered radiation. The ERR results showed that the lung and colon have the highest cancer risk incidence among the considered organs for both males and females, respectively.


Neoplasms , Occupational Exposure , Radiation Exposure , Fluoroscopy/adverse effects , Humans , Male , Operating Rooms , Radiation Dosage , Risk
14.
Appl Radiat Isot ; 179: 110031, 2022 Jan.
Article En | MEDLINE | ID: mdl-34801928

The performance characteristics of some widely employed parallel-plate ionization chambers in dosimetry of conventional high energy electron beams were evaluated and compared in the present study following the recommendations of the IAEA TRS-398 reference dosimetry protocol. Three different types of PTW-made parallel-plate ionization chambers including Roos (TM34001), Markus (TM23343), and Advanced Markus (TM34045) were employed, and correction factors for polarity (kpol), recombination (ks), and quality conversion factor ( [Formula: see text] ) were determined at different nominal electron energies of 4, 6, 9, 12, 16, and 20 MeV produced by a Varian Trilogy clinical Linac. All measurements were performed inside a MP3-M automatic water phantom in the reference condition of 100 cm SSD (source to surface distance), reference measurement depth (zref), and 10 × 10 cm2 field size at the phantom surface. The maximum and minimum range of kpol deviations from unity were respectively found for Markus and Roos ionization chambers. The maximum ks values also belonged to the Markus ionization chamber, while the minimum ks values were observed for the Advanced Markus chamber. The measured ks values through recommendations of the TRS-398 dosimetry protocol were in good accordance with those obtained by Jaffe-plot analysis for all considered ionization chambers. The type of employed ionization chamber can minimally affect the measured electron beam quality index (R50), while it can have a more considerable impact on [Formula: see text] value, especially in the case of the Markus chamber. From the results, it can be concluded that the Roos and Advanced Markus ionization chambers have a superior performance in the case of electron beam dosimetry, although all considered ionization chambers fulfilled the criteria requested by relevant reference dosimetry protocols.


Radiation Dosimeters , Radiometry/methods , Electrons , Particle Accelerators , Phantoms, Imaging
15.
Comput Methods Programs Biomed ; 208: 106246, 2021 Sep.
Article En | MEDLINE | ID: mdl-34218169

INTRODUCTION: Intraoperative radiotherapy (IORT) by low energy X-rays is a single fraction treatment modality for tumor bed irradiation after breast-conserving surgery. It has been shown that the variations of breast tissue composition can affect the absorbed dose in this method. Apart from physical quantities such as absorbed dose value, radiobiological quantities including relative biological effectiveness (RBE) may also change with the variations of breast tissue composition. Accordingly, the current study aims to quantify both single and double-strand break RBE values (RBESSB and RBEDSB) of low energy X-rays at different breast glandular fractions using a hybrid Monte Carlo (MC) simulation approach. MATERIALS AND METHODS: Produced low-energy X-rays by a validated MC model of INTRABEAM machine with 50 kV nominal voltage were considered as the radiation source. The secondary electron energy spectra at various depths inside the breast tissue with different glandular fractions were scored through GEANT4 MC Toolkit. Calculated spectra were then imported to MCDS MC code for DNA strand break calculation and RBE assessment. Both RBESSB and RBEDSB were calculated for various breast glandular fractions. RESULTS: Changing the breast glandularity can affect both the trend of secondary electron spectra and relevant RBE values at different depths inside the breast volume. In this regard, RBESSB increments by about 1% with increasing the breast glandular fraction from 0% to 100%. On the other hand, RBEDSB decrements by about 3.3% with increasing the glandular fraction in the range of 0% to 100%. Variations of the depth within the breast tissue can also influence the RBE value so that RBESSB reduces by about 1% with increasing the depth from 2 mm to 10 mm one, while RBEDSB increases about 3.4%. The relevant RBESSB and RBEDSB values to the entire target volume (breast PTV) respectively increment and decrement by about 0.8% and 3.2% with increasing the breast glandularity from 0% to 100%. CONCLUSION: From the results, it can be concluded that the breast tissue composition has a measurable effect on RBE values of employed low energy X-rays during breast IORT which can cause variations of prescribed dose for patients with distinct breast glandularity fractions.


Breast , Breast/diagnostic imaging , Computer Simulation , Humans , Monte Carlo Method , Relative Biological Effectiveness , X-Rays
16.
Int J Radiat Biol ; 97(9): 1289-1298, 2021.
Article En | MEDLINE | ID: mdl-34047663

INTRODUCTION: Nowadays, some nanoparticles (NPs) are known and used as radiosensitizers in radiotherapy and radiobiology, due to their desired biological, physical, and chemical effects on cells. This study aimed to evaluate and compare the dose enhancement factor (DEF) and the biological effectiveness of some common NPs through EGSnrc and MCDS Monte Carlo (MC) simulation codes. MATERIALS AND METHODS: To evaluate considered NPs' DEF, a single NP with 50 nm diameter was simulated at the center of concentric spheres. NP irradiations were done with 30, 60, and 100 keV photon energies. The secondary electron spectra were scored at the surface of considered NPs, and the dose values were scored at surrounding water-filled spherical shells which were distributed up to 4000 nm from the NP surface. The electron spectra were used in the MCDS code to obtain different initial DNA damages for the calculation of enhanced relative biological effectiveness (eRBE). RESULTS: By decreasing the photon energy, an increment of DEF was seen for all studied NPs. The maximum DEF at 30, 60, and 100 keV photon energies were respectively related to silver (Ag), gadolinium (Gd), and bismuth (Bi) NPs. The maximum double-strand break (DSB) related (eRBEDSB) values for the 30 keV photon belonged to Ag, while BiNPs showed the maximum values at other photon energies. The minimum eRBEDSB values were also related to iron (Fe) NPs at the entire range of studied photon energies. CONCLUSIONS: The compared nanoscale physical and biological results of our study can be helpful in the selection of optimum NP as a radiosensitizer in future radiobiological studies. Bi, gold (Au), Ag, and platinum (Pt) NPs had great potential, respectively, as radiosensitizers relative to the other studied NPs.


Monte Carlo Method , Nanoparticles , Radiation-Sensitizing Agents/pharmacology , Relative Biological Effectiveness , Dose-Response Relationship, Radiation
17.
Radiol Phys Technol ; 14(3): 226-237, 2021 Sep.
Article En | MEDLINE | ID: mdl-34043155

This study aimed to evaluate variations in dose distribution within the target volume and dose received by the organs at risk (OARs) for different tangential field arrangements during three-dimensional (3D) conformal treatment planning for left-sided breast cancer. Computed tomography (CT) images of 25 breast cancer patients were included, and three different mono-isocentric half-block (MIHB) treatment plans-parallel central axis technique (PCAXT), posterior border parallel technique (PBPT), and parallel quadrant technique (PQUDT)-were considered for each patient. The dosimetric and geometric parameters related to each followed plan were then extracted for the planning target volume (PTV) and the OARs, and compared. The results showed no significant differences among the extracted dosimetric and geometric parameters of the OARs for the different plans, while the Dmax, V95%, homogeneity index (HI), and conformity index (CI) values related to the PTV were significantly different (P < 0.05). The lowest Dmax and V95% values inside the PTV were related to the PCAXT plan. The best HI was achieved with the PBPT plan, whereas the best CI was observed for the PCAXT plan. The best correlation between the geometric and dosimetric parameters of the OARs was between V5Gy-central lung distance for the ipsilateral lung and the V5Gy-maximum heart distance for the heart in all plans. These results demonstrate that variations in the tangential field arrangement at the posterior border for optimal coverage of the PTV may not considerably affect the dose received by the OARs.


Breast Neoplasms , Radiotherapy, Intensity-Modulated , Unilateral Breast Neoplasms , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/radiotherapy , Female , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Unilateral Breast Neoplasms/diagnostic imaging , Unilateral Breast Neoplasms/radiotherapy
18.
Radiat Environ Biophys ; 60(1): 125-134, 2021 03.
Article En | MEDLINE | ID: mdl-33389050

The study reported in the present paper aimed to evaluate the effective energy (Eeff) of X-rays emitted from the surface of a bare X-ray probe and from different spherical applicators with various diameters, which are widely employed for low kV intraoperative radiotherapy (IORT) of breast cancer. A previously validated Monte Carlo model of the INTRABEAM system along with applicator diameters of 1.5-5 cm (with 0.5 cm increments) was employed for this purpose. The results show that the presence of the applicator can considerably harden the X-rays produced by the bare probe so that Eeff increases by a factor of about 2.6. Variations of applicator diameter also affects the X-ray effective energy. Specifically, increasing the applicator diameter from 1.5 to 3 cm and 3.5-5 cm resulted in an increase in the Eeff by 8.8% and 14.6%, respectively. The validity of the calculated Eeff values was confirmed by a reasonable agreement between the obtained probability density distributions (PDDs) for the full X-ray energy spectrum and those for the corresponding single effective energies, for different applicator diameters. The Eeff values obtained for different applicator diameters and the bare probe alone can be used as an alternative for the corresponding full energy spectra, in Monte Carlo-based dosimetry simulations of low-energy therapeutic X-rays, as well as for determining quality conversion factors of any ion chambers employed for low kV-IORT absolute dosimetry.


Breast Neoplasms/radiotherapy , Models, Biological , X-Ray Therapy , Computer Simulation , Female , Humans , Monte Carlo Method , Radiotherapy Dosage
19.
Comput Biol Med ; 128: 104113, 2021 01.
Article En | MEDLINE | ID: mdl-33197735

BACKGROUND: Ionometric dosimetry in IOERT is a complicated process, due to the sophisticated beam setup and the necessity for dedicated protocols for ion chamber response correction. On the other hand, the Monte Carlo (MC) technique can easily overcome such limitations and be considered as an alternative dosimetry approach. This paper presents a comparative analysis of two widely used MC codes, EGSnrc and MCNPX, for intraoperative electron beam dosimetry. METHOD: The head of LIAC12, a dedicated IOERT accelerator, was modeled by both mentioned MC codes. Then, the percentage depth dose (PDD) curves, transverse dose profiles (TDPs), and output factor (OF) values were accordingly calculated within the water phantom. To realize the accuracy of MC codes in dosimetric characterization of intraoperative electron beam, their results were finally compared with those measured by corresponding ionometric dosimetry for all forms of electron energy/applicator size. RESULTS: A good agreement was observed between the simulated and measured PDDs/TDPs for both considered MC codes, such that the calculated gamma index values were always lower than unity for both considered MC codes. Nevertheless, the lower gamma index values were found in the case of the EGSnrc code. The maximum difference between the measured and calculated OF was obtained as 2.3% and 3.1% for EGSnrc and MCNPX code, respectively. CONCLUSIONS: Although both studied MC codes showed compatible results with the measured ones, EGSnrc code has superior accuracy in this regard and can be considered as a more reliable toolkit in Monte Carlo-based commissioning of dedicated IOERT accelerators.


Electrons , Radiometry , Monte Carlo Method , Phantoms, Imaging , Water
20.
Phys Med ; 80: 297-307, 2020 Dec.
Article En | MEDLINE | ID: mdl-33246189

INTRODUCTION: Low-kV IORT (Low kilovoltage intraoperative radiotherapy) using INTRABEAM machine and dedicated spherical applicators is a candidate modality for breast cancer treatment. The current study aims to quantify the RBE (relative biologic effectiveness) variations of emitted X-rays from the surface of different spherical applicators and bare probe through a hybrid Monte Carlo (MC) simulation approach. MATERIALS AND METHODS: A validated MC model of INTRABEAM machine and different applicator diameters, based on GEANT4 Toolkit, was employed for RBE evaluation. To doing so, scored X-ray energy spectra at the surface of each applicator diameter/bare probe were used to calculate the corresponding secondary electron energy spectra at various distances inside the water and breast tissue. Then, MCDS (Monte Carlo damage simulation) code was used to calculate the RBE values according to the calculated electron spectra. RESULTS: Presence of spherical applicators can increase the RBE of emitted X-rays from the bare probe by about 22.3%. In return, changing the applicator diameter has a minimal impact (about 3.2%) on RBE variation of emitted X-rays from each applicator surface. By increasing the distance from applicator surface, the RBE increments too, so that its value enhances by about 10% with moving from 2 to 10 mm distance. Calculated RBE values within the breast tissue were higher than those of water by about 4% maximum value. CONCLUSION: Ball section of spherical IORT applicators can affect the RBE value of the emitted X-rays from INTRABEAM machine. Increased RBE of breast tissue can reduce the prescribed dose for breast irradiation if INTRABEAM machine has been calibrated inside the water.


Breast , Relative Biological Effectiveness , Breast/radiation effects , Humans , Monte Carlo Method , Radiotherapy Dosage , X-Rays
...