Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 80
1.
Article En | MEDLINE | ID: mdl-38249820

Introduction: We describe the use of anti-IL-5 monoclonal antibodies from a COPD clinic, a source other than traditional clinical trials. The objectives were to characterize the patient subgroup prescribed anti-IL-5 monoclonal antibodies and to report potential benefits. Methods: This is a retrospective case series study of 17 patients treated in a COPD subspecialty clinic. All patients had a diagnosis of COPD (post-bronchodilator FEV1/FVC <0.7) and had been prescribed an anti-IL-5 biologic for at least 8 months. Acute exacerbations of COPD (AECOPDs) were collected as reported in electronic medical records. Results: All patients (17) enrolled were treated with biologics for ≥8 months, and 13 (76%) for ≥1 year. Patients were characterized by severe disease traits, FEV1 <50% predicted, recurrent exacerbations (3.5 moderate-to-severe AECOPDs in the year before treatment), high peripheral blood eosinophil counts (≥250 cells/µL in the previous year), all on inhaled triple therapy, and only 1 patient with a diagnosis of asthma prior to smoking. There was a statistically significant decrease in the exacerbation rate compared with baseline after 8 and 12 months of anti-IL-5 treatment, respectively, yielding the equivalent of a 2-3x reduction in exacerbation rate. Absolute FEV1 decreased, and the decline in FEV1 % of predicted reached statistical significance (p<0.05); CAT score improved (p<0.05). Discussion: This real-world evidence data aligns with existing studies suggesting the potential benefit of anti-IL-5 treatment for specific patients with COPD and therefore advocates for further investigation of RCTs on the use of anti-IL-5 biologics for well-characterized patients with COPD.


Antibodies, Monoclonal , Biological Products , Pulmonary Disease, Chronic Obstructive , Humans , Administration, Inhalation , Antibodies, Monoclonal/therapeutic use , Biological Products/therapeutic use , Bronchodilator Agents/therapeutic use , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/drug therapy , Retrospective Studies
2.
Toxicol Lett ; 391: 13-25, 2024 Jan.
Article En | MEDLINE | ID: mdl-38036013

The aryl hydrocarbon receptor (AhR) is a cytosolic transcription factor that can be activated by endogenous or xenobiotic ligands. Upon activation, the AhR translocates to the nucleus, dimerizes with the AhR nuclear translator (ARNT), and binds to specific DNA sequences called xenobiotic response elements (XRE) to promote target gene transcription, including cytochrome P450 (e.g., CYP1A1) expression. In addition to mRNA, the AhR may also regulate long non-coding RNA (lncRNA) expression. lncRNA are transcripts more than 200 nucleotides in length that do not encode a protein. Herein, we tested whether AhR activation regulates the expression of lncRNA in response to benzo[a]pyrene (B[a]P) using RNA sequencing (RNA-seq). We found that many lncRNA (e.g., SATB1-AS1, MIR4290HG, AC008969.1, LINC01533, VIPR1-AS1) and protein-coding RNA (e.g., CYP1A1, BX005266.2, AQP3, BTG2, DCX, and AhRR) were differentially expressed (DE) in A549 cells treated with B[a]P; many of these genes were dependent on AhR expression including CYP1A1, CYP1B1 and TiPARP. GO analyses indicated that DE protein-coding RNAs in A549WT cells are associated with distinct molecular functions compared to A549KO cells. KEGG analyses showed the hsa01100 pathway was associated with DE lncRNA only in A549WT cells. A549KO cells treated with B[a]P exhibited a distinct set of differentially-regulated lncRNA including upregulation of HOTAIR. We further confirmed that despite AhR activation in A549WT cells, B[a]P did not alter the expression of many well-characterized lncRNA including NEAT1, HOTTIP, SOX2OT, MALAT1, H19, and Linc00673. Thus, there is control over select lncRNA expression in A549 cells exposed to B[a]P, a finding which could yield insight into the molecular function of the AhR.


RNA, Long Noncoding , Receptors, Aryl Hydrocarbon , Receptors, Aryl Hydrocarbon/metabolism , RNA, Long Noncoding/genetics , Cytochrome P-450 CYP1A1/metabolism , Xenobiotics , Up-Regulation
3.
Biochem Pharmacol ; 216: 115745, 2023 10.
Article En | MEDLINE | ID: mdl-37597813

The aryl hydrocarbon receptor (AhR) is a cytosolic transcription factor activated by endogenous ligands and xenobiotic chemicals. Once the AhR is activated, it translocates to the nucleus, dimerizes with the AhR nuclear translator (ARNT) and binds to xenobiotic response elements (XRE) to promote gene transcription, notably the cytochrome P450 CYP1A1. The AhR not only mediates the toxic effects of environmental chemicals, but also has numerous putative physiological functions. This dichotomy in AhR biology may be related to reciprocal regulation of long non-coding RNA (lncRNA). lncRNA are defined as transcripts more than 200 nucleotides in length that do not encode a protein but are implicated in many physiological processes such as cell differentiation, cell proliferation, and apoptosis. lncRNA are also linked to disease pathogenesis, particularly the development of cancer. Recent studies have revealed that AhR activation by environmental chemicals affects the expression and function of lncRNA. In this article, we provide an overview of AhR signaling pathways activated by diverse ligands and highlight key differences in the putative biological versus toxicological response of AhR activation. We also detail the functions of lncRNA and provide current data on their regulation by the AhR. Finally, we outline how overlap in function between AhR and lncRNA may be one way in which AhR can be both a regulator of endogenous functions but also a mediator of toxicological responses to environmental chemicals. Overall, more research is still needed to fully understand the dynamic interplay between the AhR and lncRNA.


Polychlorinated Dibenzodioxins , RNA, Long Noncoding , Receptors, Aryl Hydrocarbon/metabolism , RNA, Long Noncoding/genetics , Xenobiotics , Polychlorinated Dibenzodioxins/toxicity , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism
4.
Int J Mol Sci ; 24(11)2023 May 31.
Article En | MEDLINE | ID: mdl-37298489

Lung cancer is the leading cause of cancer-related deaths due to its high incidence, late diagnosis, and limited success in clinical treatment. Prevention therefore is critical to help improve lung cancer management. Although tobacco control and tobacco cessation are effective strategies for lung cancer prevention, the numbers of current and former smokers in the USA and globally are not expected to decrease significantly in the near future. Chemoprevention and interception are needed to help high-risk individuals reduce their lung cancer risk or delay lung cancer development. This article will review the epidemiological data, pre-clinical animal data, and limited clinical data that support the potential of kava in reducing human lung cancer risk via its holistic polypharmacological effects. To facilitate its future clinical translation, advanced knowledge is needed with respect to its mechanisms of action and the development of mechanism-based non-invasive biomarkers in addition to safety and efficacy in more clinically relevant animal models.


Kava , Lung Neoplasms , Animals , Humans , Chemoprevention/methods , Biomarkers , Lung Neoplasms/epidemiology , Lung Neoplasms/prevention & control , Lung Neoplasms/etiology
5.
Arch Toxicol ; 97(7): 1963-1978, 2023 07.
Article En | MEDLINE | ID: mdl-37179517

Cannabis contains cannabinoids including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC causes the psychoactive effects of cannabis, and both THC and CBD are thought to be anti-inflammatory. Cannabis is typically consumed by inhaling smoke that contains thousands of combustion products that may damage the lungs. However, the relationship between cannabis smoke exposure and alterations in respiratory health is poorly defined. To address this gap in knowledge, we first developed a mouse model of cannabis smoke exposure using a nose-only rodent inhalation exposure system. We then tested the acute effects of two dried cannabis products that differ substantially in their THC-CBD ratio: Indica-THC dominant (I-THC; 16-22% THC) and Sativa-CBD dominant (S-CBD; 13-19% CBD). We demonstrate that this smoke exposure regime not only delivers physiologically relevant levels of THC to the bloodstream, but that acute inhalation of cannabis smoke modulates the pulmonary immune response. Cannabis smoke decreased the percentage of lung alveolar macrophages but increased lung interstitial macrophages (IMs). There was also a decrease in lung dendritic cells as well as Ly6Cintermediate and Ly6Clow monocytes, but an increase in lung neutrophils and CD8+ T cells. These immune cell changes were paralleled with changes in several immune mediators. These immunological modifications were more pronounced when mice were exposed to S-CBD compared to the I-THC variety. Thus, we show that acute cannabis smoke differentially affects lung immunity based on the THC:CBD ratio, thereby providing a foundation to further explore the effect of chronic cannabis smoke exposures on pulmonary health.


Cannabidiol , Cannabis , Hallucinogens , Animals , Mice , Cannabidiol/toxicity , Dronabinol/toxicity , Dronabinol/analysis , Smoke/adverse effects , CD8-Positive T-Lymphocytes , Cannabinoid Receptor Agonists , Lung
6.
Respir Res ; 24(1): 95, 2023 Mar 28.
Article En | MEDLINE | ID: mdl-36978106

The lungs, in addition to participating in gas exchange, represent the first line of defense against inhaled pathogens and respiratory toxicants. Cells lining the airways and alveoli include epithelial cells and alveolar macrophages, the latter being resident innate immune cells important in surfactant recycling, protection against bacterial invasion and modulation of lung immune homeostasis. Environmental exposure to toxicants found in cigarette smoke, air pollution and cannabis can alter the number and function of immune cells in the lungs. Cannabis (marijuana) is a plant-derived product that is typically inhaled in the form of smoke from a joint. However, alternative delivery methods such as vaping, which heats the plant without combustion, are becoming more common. Cannabis use has increased in recent years, coinciding with more countries legalizing cannabis for both recreational and medicinal purposes. Cannabis may have numerous health benefits owing to the presence of cannabinoids that dampen immune function and therefore tame inflammation that is associated with chronic diseases such as arthritis. The health effects that could come with cannabis use remain poorly understood, particularly inhaled cannabis products that may directly impact the pulmonary immune system. Herein, we first describe the bioactive phytochemicals present in cannabis, with an emphasis on cannabinoids and their ability to interact with the endocannabinoid system. We also review the current state-of-knowledge as to how inhaled cannabis/cannabinoids can shape immune response in the lungs and discuss the potential consequences of altered pulmonary immunity. Overall, more research is needed to understand how cannabis inhalation shapes the pulmonary immune response to balance physiological and beneficial responses with potential deleterious consequences on the lungs.


Cannabinoids , Cannabis , Lung Diseases , Humans , Cannabis/adverse effects , Lung , Lung Diseases/chemically induced , Lung Diseases/drug therapy , Cannabinoids/pharmacology , Immunity
7.
FASEB J ; 37(2): e22732, 2023 02.
Article En | MEDLINE | ID: mdl-36694994

E-cigarettes currently divide public opinion, with some considering them a useful tool for smoking cessation and while others are concerned with potentially adverse health consequences. However, it may take decades to fully understand the effects of e-cigarette use in humans given their relative newness on the market. This highlights the need for comprehensive preclinical studies investigating the effects of e-cigarette exposure on health outcomes. Here, we investigated the impact of chronic, low-level JUUL aerosol exposure on multiple lung outcomes. JUUL is a brand of e-cigarettes popular with youth and young adults. To replicate human exposures, 8- to 12-week-old male and female C57BL/6J mice were exposed to commercially available JUUL products (containing 59 mg/ml nicotine). Mice were exposed to room air, PG/VG, or JUUL daily for 4 weeks. After the exposure period, inflammatory markers were assessed via qRT-PCR, multiplex cytokine assays, and differential cell count. Proteomic and transcriptomic analyses were also performed on samples isolated from the lavage of the lungs; this included unbiased analysis of proteins contained within extracellular vesicles (EVs). Mice exposed to JUUL aerosols for 4 weeks had significantly increased neutrophil and lymphocyte populations in the BAL and some changes in cytokine mRNA expression. However, BAL cytokines did not change. Proteomic and transcriptomic analysis revealed significant changes in numerous biological pathways including neutrophil degranulation, PPAR signaling, and xenobiotic metabolism. Thus, e-cigarettes are not inert and can cause significant cellular and molecular changes in the lungs.


Electronic Nicotine Delivery Systems , Young Adult , Adolescent , Male , Humans , Female , Animals , Mice , Transcriptome , Proteomics , Mice, Inbred C57BL , Aerosols/analysis , Lung
8.
Immunol Cell Biol ; 101(2): 156-170, 2023 02.
Article En | MEDLINE | ID: mdl-36510483

Δ9 -Tetrahydrocannabinol (Δ9 -THC) and cannabidiol (CBD) are cannabinoids found in Cannabis sativa. While research supports cannabinoids reduce inflammation, the consensus surrounding receptor(s)-mediated effects has yet to be established. Here, we investigated the receptor-mediated properties of Δ9 -THC and CBD on alveolar macrophages, an important pulmonary immune cell in direct contact with cannabinoids inhaled by cannabis smokers. MH-S cells, a mouse alveolar macrophage cell line, were exposed to Δ9 -THC and CBD, with and without lipopolysaccharide (LPS). Outcomes included RNA-sequencing and cytokine analysis. Δ9 -THC and CBD alone did not affect the basal transcriptional response of MH-S cells. In response to LPS, Δ9 -THC and CBD significantly reduced the expression of numerous proinflammatory cytokines including tumor necrosis factor-alpha, interleukin (IL)-1ß and IL-6, an effect that was dependent on CB2 . The anti-inflammatory effects of CBD but not Δ9 -THC were mediated through a reduction in signaling through nuclear factor-kappa B and extracellular signal-regulated protein kinase 1/2. These results suggest that CBD and Δ9 -THC have potent immunomodulatory properties in alveolar macrophages, a cell type important in immune homeostasis in the lungs. Further investigation into the effects of cannabinoids on lung immune cells could lead to the identification of therapies that may ameliorate conditions characterized by inflammation.


Cannabidiol , Cannabinoids , Cannabis , Mice , Animals , Cannabidiol/pharmacology , Dronabinol/pharmacology , Macrophages, Alveolar/metabolism , Lipopolysaccharides/pharmacology , Cannabis/metabolism , Cytokines/metabolism , Inflammation/metabolism
9.
Front Toxicol ; 5: 1244596, 2023.
Article En | MEDLINE | ID: mdl-38164438

Introduction: Evidence suggests that e-cigarette use (vaping) increases cardiovascular disease risk, but decades are needed before people who vape would develop pathology. Thus, murine models of atherosclerosis can be utilized as tools to understand disease susceptibility, risk and pathogenesis. Moreover, there is a poor understanding of how risk factors for atherosclerosis (i.e., hyperlipidemia, high-fat diet) intersect with vaping to promote disease risk. Herein, we evaluated whether there was early evidence of atherosclerosis in an inducible hyperlipidemic mouse exposed to aerosol from commercial pod-style devices and e-liquid. Methods: Mice were injected with adeno-associated virus containing the human protein convertase subtilisin/kexin type 9 (PCSK9) variant to promote hyperlipidemia. These mice were fed a high-fat diet and exposed to room air or aerosol derived from JUUL pods containing polyethylene glycol/vegetable glycerin (PG/VG) or 5% nicotine with mango flavoring for 4 weeks; this timepoint was utilized to assess markers of atherosclerosis that may occur prior to the development of atherosclerotic plaques. Results: These data show that various parameters including weight, circulating lipoprotein/glucose levels, and splenic immune cells were significantly affected by exposure to PG/VG and/or nicotine-containing aerosols. Discussion: Not only can this mouse model be utilized for chronic vaping studies to assess the vascular pathology but these data support that vaping is not risk-free and may increase CVD outcomes later in life.

11.
Front Pharmacol ; 13: 852029, 2022.
Article En | MEDLINE | ID: mdl-35418857

Cannabis (marijuana) is the most commonly used illicit product in the world and is the second most smoked plant after tobacco. There has been a rapid increase in the number of countries legalizing cannabis for both recreational and medicinal purposes. Smoking cannabis in the form of a joint is the most common mode of cannabis consumption. Combustion of cannabis smoke generates many of the same chemicals as tobacco smoke. Although the impact of tobacco smoke on respiratory health is well-known, the consequence of cannabis smoke on the respiratory system and, in particular, the inflammatory response is unclear. Besides the combustion products present in cannabis smoke, cannabis also contains cannabinoids including Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). These compounds are hydrophobic and not present in aqueous solutions. In order to understand the impact of cannabis smoke on pathological mechanisms associated with adverse respiratory outcomes, the development of in vitro surrogates of cannabis smoke exposure is needed. Therefore, we developed a standardized protocol for the generation of cannabis smoke extract (CaSE) to investigate its effect on cellular mechanisms in vitro. First, we determined the concentration of Δ9-THC, one of the major cannabinoids, by ELISA and found that addition of methanol to the cell culture media during generation of the aqueous smoke extract significantly increased the amount of Δ9-THC. We also observed by LC-MS/MS that CaSE preparation with methanol contains CBD. Using a functional assay in cells for CB1 receptors, the major target of cannabinoids, we found that this CaSE contains Δ9-THC which activates CB1 receptors. Finally, this standardized preparation of CaSE induces an inflammatory response in human lung fibroblasts. This study provides an optimized protocol for aqueous CaSE preparation containing biologically active cannabinoids that can be used for in vitro experimentation of cannabis smoke and its potential impact on various indices of pulmonary health.

12.
Arch Toxicol ; 96(6): 1783-1798, 2022 06.
Article En | MEDLINE | ID: mdl-35254488

JUUL is a popular e-cigarette brand that manufactures e-liquids in a variety of flavors, such as mango and mint. Despite their popularity, the pulmonary effects of flavored JUUL e-liquids that are aerosolized and subsequently inhaled are not known. Therefore, the purpose of this study was to evaluate if acute exposure to JUUL e-cigarette aerosols in three popular flavors elicits an immunomodulatory or oxidative stress response in mice. We first developed a preclinical model that mimics human use patterns of e-cigarettes using 1 puff/min or 4 puffs/min exposure regimes. Based on cotinine levels, these exposures were representative of light/occasional and moderate JUUL users. We then exposed C57BL/6 mice to JUUL e-cigarette aerosols in mango, mint, and Virginia tobacco flavors containing 5% nicotine for 3 days, and assessed the inflammatory and oxidative stress response in the lungs and blood. In response to the 1 puff/min regime (light/occasional user), there were minimal changes in BAL cell composition or lung mRNA expression. However, at 4 puffs/min (moderate user), mint-flavored JUUL significantly increased lung neutrophils, while mango-flavored JUUL significantly increased Tnfα and Il13 mRNA in the lungs. Both the 1- and 4 puffs/min regimes significantly increased oxidative stress markers in the blood, indicating systemic effects. Thus, JUUL products are not inert; even short-term inhalation of flavored JUUL e-cigarette aerosols differentially causes immune modulation and oxidative stress responses.


Electronic Nicotine Delivery Systems , Tobacco Products , Aerosols , Animals , Female , Flavoring Agents/toxicity , Lung , Male , Mice , Mice, Inbred C57BL , Oxidative Stress , RNA, Messenger
13.
Respir Res ; 22(1): 323, 2021 Dec 28.
Article En | MEDLINE | ID: mdl-34963461

BACKGROUND: Pulmonary fibrosis is thought to be driven by recurrent alveolar epithelial injury which leads to the differentiation of fibroblasts into α-smooth muscle actin (α-SMA)-expressing myofibroblasts and subsequent deposition of extracellular matrix (ECM). Transforming growth factor beta-1 (TGF-ß1) plays a key role in fibroblast differentiation, which we have recently shown involves human antigen R (HuR). HuR is an RNA binding protein that also increases the translation of hypoxia inducible factor (HIF-1α) mRNA, a transcription factor critical for inducing a metabolic shift from oxidative phosphorylation towards glycolysis. This metabolic shift may cause fibroblast differentiation. We hypothesized that under hypoxic conditions, HuR controls myofibroblast differentiation and glycolytic reprogramming in human lung fibroblasts (HLFs). METHODS: Primary HLFs were cultured in the presence (or absence) of TGF-ß1 (5 ng/ml) under hypoxic (1% O2) or normoxic (21% O2) conditions. Evaluation included mRNA and protein expression of glycolytic and myofibroblast/ECM markers by qRT-PCR and western blot. Metabolic profiling was done by proton nuclear magnetic resonance (1H- NMR). Separate experiments were conducted to evaluate the effect of HuR on metabolic reprogramming using siRNA-mediated knock-down. RESULTS: Hypoxia alone had no significant effect on fibroblast differentiation or metabolic reprogramming. While hypoxia- together with TGFß1- increased mRNA levels of differentiation and glycolysis genes, such as ACTA2, LDHA, and HK2, protein levels of α-SMA and collagen 1 were significantly reduced. Hypoxia induced cytoplasmic translocation of HuR. Knockdown of HuR reduced features of fibroblast differentiation in response to TGF-ß1 with and without hypoxia, including α-SMA and the ECM marker collagen I, but had no effect on lactate secretion. CONCLUSIONS: Hypoxia reduced myofibroblasts differentiation and lactate secretion in conjunction with TGF-ß. HuR is an important protein in the regulation of myofibroblast differentiation but does not control glycolysis in HLFs in response to hypoxia. More research is needed to understand the functional implications of HuR in IPF pathogenesis.


Cell Differentiation/physiology , Cell Hypoxia/physiology , Cellular Reprogramming/physiology , ELAV-Like Protein 1/metabolism , Lung/metabolism , Transforming Growth Factor beta/pharmacology , Cell Differentiation/drug effects , Cell Hypoxia/drug effects , Cells, Cultured , Cellular Reprogramming/drug effects , Dose-Response Relationship, Drug , ELAV-Like Protein 1/genetics , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Lung/cytology , Lung/drug effects
14.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article En | MEDLINE | ID: mdl-34884756

Pulmonary fibrosis is a chronic, fibrotic lung disease affecting 3 million people worldwide. The ACE2/Ang-(1-7)/MasR axis is of interest in pulmonary fibrosis due to evidence of its anti-fibrotic action. Current scientific evidence supports that inhibition of ACE2 causes enhanced fibrosis. ACE2 is also the primary receptor that facilitates the entry of SARS-CoV-2, the virus responsible for the current COVID-19 pandemic. COVID-19 is associated with a myriad of symptoms ranging from asymptomatic to severe pneumonia and acute respiratory distress syndrome (ARDS) leading to respiratory failure, mechanical ventilation, and often death. One of the potential complications in people who recover from COVID-19 is pulmonary fibrosis. Cigarette smoking is a risk factor for fibrotic lung diseases, including the idiopathic form of this disease (idiopathic pulmonary fibrosis), which has a prevalence of 41% to 83%. Cigarette smoke increases the expression of pulmonary ACE2 and is thought to alter susceptibility to COVID-19. Cannabis is another popular combustible product that shares some similarities with cigarette smoke, however, cannabis contains cannabinoids that may reduce inflammation and/or ACE2 levels. The role of cannabis smoke in the pathogenesis of pulmonary fibrosis remains unknown. This review aimed to characterize the ACE2-Ang-(1-7)-MasR Axis in the context of pulmonary fibrosis with an emphasis on risk factors, including the SARS-CoV-2 virus and exposure to environmental toxicants. In the context of the pandemic, there is a dire need for an understanding of pulmonary fibrotic events. More research is needed to understand the interplay between ACE2, pulmonary fibrosis, and susceptibility to coronavirus infection.


Angiotensin I/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Fibrosis/metabolism , Peptide Fragments/metabolism , Proto-Oncogene Mas/metabolism , Cannabis , Cigarette Smoking , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Inflammation , Lung/pathology , Pandemics , Respiration, Artificial , Respiratory Distress Syndrome , Respiratory Insufficiency/metabolism , Risk Factors , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
15.
Sci Rep ; 11(1): 23189, 2021 11 30.
Article En | MEDLINE | ID: mdl-34848742

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known to mediate toxic responses to dioxin. However, the role of the AhR in the regulation of cellular physiology has only recently been appreciated, including its ability to control cell cycle progression and apoptosis by unknown mechanisms. We hypothesized that the AhR enhances the activation of the AKT serine/threonine kinase (Akt) pathway to promote cell survival. Utilizing AhR knock-out (Ahr-/-) and wild-type (Ahr+/+) mouse lung fibroblasts (MLFs), we found that Ahr-/- MLFs have significantly higher basal Akt phosphorylation but that AhR did not affect Akt phosphorylation in MLFs exposed to growth factors or AhR ligands. Basal Akt phosphorylation was dependent on PI3K but was unaffected by changes in intracellular glutathione (GSH) or p85α. There was no significant decrease in cell viability in Ahr-/- MLFs treated with LY294002-a PI3K inhibitor-although LY294002 did attenuate MTT reduction, indicating an affect on mitochondrial function. Using a mass spectrometry (MS)-based approach, we identified several proteins that were differentially phosphorylated in the Ahr-/- MLFs compared to control cells, including proteins involved in the regulation of extracellular matrix (ECM), focal adhesion, cytoskeleton remodeling and mitochondrial function. In conclusion, Ahr ablation increased basal Akt phosphorylation in MLFs. Our results indicate that AhR may modulate the phosphorylation of a variety of novel proteins not previously identified as AhR targets, findings that help advance our understanding of the endogenous functions of AhR.


Gene Expression Regulation , Lung/metabolism , Proto-Oncogene Proteins c-akt/biosynthesis , Receptors, Aryl Hydrocarbon/metabolism , Animals , Cell Survival , Cells, Cultured , Cytoskeleton , Fibroblasts/metabolism , Homeostasis , Intercellular Signaling Peptides and Proteins , Mass Spectrometry , Mice , Phosphorylation , Proteomics/methods , Smoke , Tetrazolium Salts/pharmacology , Thiazoles/pharmacology , Tobacco Products
16.
Front Physiol ; 12: 720196, 2021.
Article En | MEDLINE | ID: mdl-34744763

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates the metabolism of xenobiotics. There is growing evidence that the AhR is implicated in physiological processes such proliferation, differentiation, and immune responses. Recently, a role of the AhR in regulating allergic asthma has been suggested, but whether the AhR also regulates other type of asthma, particularly occupational/irritant-induced asthma, remains unknown. Using AhR-deficient (Ahr-/- ) mice, we compared the function of the AhR in the response to ovalbumin (OVA; allergic asthma) vs. chlorine (Cl2; irritant-induced asthma) exposure. Lung inflammation and airway hyperresponsiveness were assessed 24h after exposure to Cl2 or OVA challenge in Ahr-/- and heterozygous (Ahr+/- ) mice. After OVA challenge, absence of AhR was associated with significantly enhanced eosinophilia and lymphocyte influx into the airways of Ahr-/- mice. There were also increased levels of interleukin-4 (IL-4) and IL-5 in the airways. However, OVA-induced airway hyperresponsiveness was not affected. In the irritant-induced asthma model caused by exposure to Cl2, the AhR did not regulate the inflammatory response. However, absence of AhR reduced Cl2-induced airway hyperresponsiveness. Collectively, these results support a differential role for the AhR in regulating asthma outcomes in response to diverse etiological agents.

17.
Int J Mol Sci ; 22(21)2021 Nov 04.
Article En | MEDLINE | ID: mdl-34769392

Chronic obstructive pulmonary disease (COPD) is an incurable and prevalent respiratory disorder that is characterized by chronic inflammation and emphysema. COPD is primarily caused by cigarette smoke (CS). CS alters numerous cellular processes, including the post-transcriptional regulation of mRNAs. The identification of RNA-binding proteins (RBPs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) as main factors engaged in the regulation of RNA biology opens the door to understanding their role in coordinating physiological cellular processes. Dysregulation of post-transcriptional regulation by foreign particles in CS may lead to the development of diseases such as COPD. Here we review current knowledge about post-transcriptional events that may be involved in the pathogenesis of COPD.


Gene Expression Regulation , Pulmonary Disease, Chronic Obstructive/pathology , RNA Processing, Post-Transcriptional , Animals , Humans , Pulmonary Disease, Chronic Obstructive/genetics
18.
J Cell Physiol ; 236(10): 6836-6851, 2021 10.
Article En | MEDLINE | ID: mdl-33855709

Idiopathic pulmonary fibrosis (IPF) is a disease of progressive scarring caused by excessive extracellular matrix (ECM) deposition and activation of α-SMA-expressing myofibroblasts. Human antigen R (HuR) is an RNA binding protein that promotes protein translation. Upon translocation from the nucleus to the cytoplasm, HuR functions to stabilize messenger RNA (mRNA) to increase protein levels. However, the role of HuR in promoting ECM production, myofibroblast differentiation, and lung fibrosis is unknown. Human lung fibroblasts (HLFs) treated with transforming growth factor ß1 (TGF-ß1) showed a significant increase in translocation of HuR from the nucleus to the cytoplasm. TGF-ß-treated HLFs that were transfected with HuR small interfering RNA had a significant reduction in α-SMA protein as well as the ECM proteins COL1A1, COL3A, and FN1. HuR was also bound to mRNA for ACTA2, COL1A1, COL3A1, and FN. HuR knockdown affected the mRNA stability of ACTA2 but not that of the ECM genes COL1A1, COL3A1, or FN. In mouse models of pulmonary fibrosis, there was higher cytoplasmic HuR in lung structural cells compared to control mice. In human IPF lungs, there was also more cytoplasmic HuR. This study is the first to show that HuR in lung fibroblasts controls their differentiation to myofibroblasts and consequent ECM production. Further research on HuR could assist in establishing the basis for the development of new target therapy for fibrotic diseases, such as IPF.


Cell Transdifferentiation , ELAV-Like Protein 1/metabolism , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Myofibroblasts/metabolism , Actins/genetics , Actins/metabolism , Animals , Cell Transdifferentiation/drug effects , Cells, Cultured , Disease Models, Animal , ELAV-Like Protein 1/genetics , Extracellular Matrix/drug effects , Extracellular Matrix/pathology , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Fibroblasts/drug effects , Fibroblasts/pathology , Gene Expression Regulation , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Lung/drug effects , Lung/pathology , Mice , Myofibroblasts/pathology , Transforming Growth Factor beta1/pharmacology
19.
Front Immunol ; 12: 630427, 2021.
Article En | MEDLINE | ID: mdl-33659010

Cigarette smoke is a prevalent respiratory toxicant that remains a leading cause of death worldwide. Cigarette smoke induces inflammation in the lungs and airways that contributes to the development of diseases such as lung cancer and chronic obstructive pulmonary disease (COPD). Due to the presence of aryl hydrocarbon receptor (AhR) ligands in cigarette smoke, activation of the AhR has been implicated in driving this inflammatory response. However, we have previously shown that the AhR suppresses cigarette smoke-induced pulmonary inflammation, but the mechanism by which the AhR achieves its anti-inflammatory function is unknown. In this study, we use the AhR antagonist CH-223191 to inhibit AhR activity in mice. After an acute (3-day) cigarette smoke exposure, AhR inhibition was associated with significantly enhanced neutrophilia in the airways in response to cigarette smoke, mimicking the phenotype of AhR-deficient mice. We then used genetically-modified mouse strains which express an AhR that can bind ligand but either cannot translocate to the nucleus or bind its cognate response element, to show that these features of the AhR pathway are not required for the AhR to suppress pulmonary neutrophilia. Finally, using the non-toxic endogenous AhR ligand FICZ, we provide proof-of-concept that activation of pulmonary AhR attenuates smoke-induced inflammation. Collectively, these results support the importance of AhR activity in mediating its anti-inflammatory function in response to cigarette smoke. Further investigation of the precise mechanisms by which the AhR exerts is protective functions may lead to the development of therapeutic agents to treat people with chronic lung diseases that have an inflammatory etiology, but for which few therapeutic options exist.


Basic Helix-Loop-Helix Transcription Factors/physiology , Dioxins/pharmacology , Neutrophils/pathology , Nicotiana/adverse effects , Pulmonary Disease, Chronic Obstructive/prevention & control , Receptors, Aryl Hydrocarbon/physiology , Response Elements/physiology , Smoke/adverse effects , Acute Disease , Animals , Azo Compounds/pharmacology , Carbazoles/pharmacology , Female , Male , Mice , Pyrazoles/pharmacology
20.
FASEB J ; 35(3): e21376, 2021 03.
Article En | MEDLINE | ID: mdl-33605487

Emphysema, a component of chronic obstructive pulmonary disease (COPD), is characterized by irreversible alveolar destruction that results in a progressive decline in lung function. This alveolar destruction is caused by cigarette smoke, the most important risk factor for COPD. Only 15%-20% of smokers develop COPD, suggesting that unknown factors contribute to disease pathogenesis. We postulate that the aryl hydrocarbon receptor (AHR), a receptor/transcription factor highly expressed in the lungs, may be a new susceptibility factor whose expression protects against COPD. Here, we report that Ahr-deficient mice chronically exposed to cigarette smoke develop airspace enlargement concomitant with a decline in lung function. Chronic cigarette smoke exposure also increased cleaved caspase-3, lowered SOD2 expression, and altered MMP9 and TIMP-1 levels in Ahr-deficient mice. We also show that people with COPD have reduced expression of pulmonary and systemic AHR, with systemic AHR mRNA levels positively correlating with lung function. Systemic AHR was also lower in never-smokers with COPD. Thus, AHR expression protects against the development of COPD by controlling interrelated mechanisms involved in the pathogenesis of this disease. This study identifies the AHR as a new, central player in the homeostatic maintenance of lung health, providing a foundation for the AHR as a novel therapeutic target and/or predictive biomarker in chronic lung disease.


Pulmonary Disease, Chronic Obstructive/etiology , Receptors, Aryl Hydrocarbon/deficiency , Aged , Aged, 80 and over , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/physiology , Emphysema/etiology , Forced Expiratory Volume , Humans , Lung/physiopathology , Male , Mice , Middle Aged , Pulmonary Disease, Chronic Obstructive/physiopathology , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/physiology , Smoking/adverse effects
...