Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2517, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514639

RESUMEN

Animals sense and respond to nutrient availability in their environments, a task coordinated in part by the mTOR complex 1 (mTORC1) pathway. mTORC1 regulates growth in response to nutrients and, in mammals, senses specific amino acids through specialized sensors that bind the GATOR1/2 signaling hub. Given that animals can occupy diverse niches, we hypothesized that the pathway might evolve distinct sensors in different metazoan phyla. Whether such customization occurs, and how the mTORC1 pathway might capture new inputs, is unknown. Here, we identify the Drosophila melanogaster protein Unmet expectations (CG11596) as a species-restricted methionine sensor that directly binds the fly GATOR2 complex in a fashion antagonized by S-adenosylmethionine (SAM). We find that in Dipterans GATOR2 rapidly evolved the capacity to bind Unmet and to thereby repurpose a previously independent methyltransferase as a SAM sensor. Thus, the modular architecture of the mTORC1 pathway allows it to co-opt preexisting enzymes to expand its nutrient sensing capabilities, revealing a mechanism for conferring evolvability on an otherwise conserved system.


Asunto(s)
Drosophila melanogaster , Serina-Treonina Quinasas TOR , Animales , Serina-Treonina Quinasas TOR/metabolismo , Drosophila melanogaster/metabolismo , Complejos Multiproteicos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , S-Adenosilmetionina , Nutrientes , Mamíferos/metabolismo
2.
bioRxiv ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37292894

RESUMEN

Animals must sense and respond to nutrient availability in their local niche. This task is coordinated in part by the mTOR complex 1 (mTORC1) pathway, which regulates growth and metabolism in response to nutrients1-5. In mammals, mTORC1 senses specific amino acids through specialized sensors that act through the upstream GATOR1/2 signaling hub6-8. To reconcile the conserved architecture of the mTORC1 pathway with the diversity of environments that animals can occupy, we hypothesized that the pathway might maintain plasticity by evolving distinct nutrient sensors in different metazoan phyla1,9,10. Whether such customization occurs-and how the mTORC1 pathway might capture new nutrient inputs-is not known. Here, we identify the Drosophila melanogaster protein Unmet expectations (Unmet, formerly CG11596) as a species-restricted nutrient sensor and trace its incorporation into the mTORC1 pathway. Upon methionine starvation, Unmet binds to the fly GATOR2 complex to inhibit dTORC1. S-adenosylmethionine (SAM), a proxy for methionine availability, directly relieves this inhibition. Unmet expression is elevated in the ovary, a methionine-sensitive niche11, and flies lacking Unmet fail to maintain the integrity of the female germline under methionine restriction. By monitoring the evolutionary history of the Unmet-GATOR2 interaction, we show that the GATOR2 complex evolved rapidly in Dipterans to recruit and repurpose an independent methyltransferase as a SAM sensor. Thus, the modular architecture of the mTORC1 pathway allows it to co-opt preexisting enzymes and expand its nutrient sensing capabilities, revealing a mechanism for conferring evolvability on an otherwise highly conserved system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...