Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Aging Cell ; : e14160, 2024 04 02.
Article En | MEDLINE | ID: mdl-38566432

Age and elevated intraocular pressure (IOP) are the two primary risk factors for glaucoma, an optic neuropathy that is the leading cause of irreversible blindness. In most people, IOP is tightly regulated over a lifetime by the conventional outflow tissues. However, the mechanistic contributions of age to conventional outflow dysregulation, elevated IOP and glaucoma are unknown. To address this gap in knowledge, we studied how age affects the morphology, biomechanical properties and function of conventional outflow tissues in C57BL/6 mice, which have an outflow system similar to humans. As reported in humans, we observed that IOP in mice was maintained within a tight range over their lifespan. Remarkably, despite a constellation of age-related changes to the conventional outflow tissues that would be expected to hinder aqueous drainage and impair homeostatic function (decreased cellularity, increased pigment accumulation, increased cellular senescence and increased stiffness), outflow facility, a measure of conventional outflow tissue fluid conductivity, was stable with age. We conclude that the murine conventional outflow system has significant functional reserve in healthy eyes. However, these age-related changes, when combined with other underlying factors, such as genetic susceptibility, are expected to increase risk for ocular hypertension and glaucoma.

2.
bioRxiv ; 2023 Dec 07.
Article En | MEDLINE | ID: mdl-38106150

Age and elevated intraocular pressure (IOP) are the two primary risk factors for glaucoma, an optic neuropathy that is the leading cause of irreversible blindness. In most people, IOP is tightly regulated over a lifetime by the conventional outflow tissues. However, the mechanistic contributions of age to conventional outflow dysregulation, elevated IOP and glaucoma are unknown. To address this gap in knowledge, we studied how age affects the morphology, biomechanical properties and function of conventional outflow tissues in C57BL/6 mice, which have an outflow system similar to humans. As reported in humans, we observed that IOP in mice was maintained within a tight range over their lifespan. Remarkably, despite a constellation of age-related changes to the conventional outflow tissues that would be expected to hinder aqueous drainage and impair homeostatic function (decreased cellularity, increased pigment accumulation, increased cellular senescence and increased stiffness), outflow facility, a measure of conventional outflow tissue fluid conductivity, was stable with age. We conclude that the murine conventional outflow system has significant functional reserve in healthy eyes. However, these age-related changes, when combined with other underlying factors, such as genetic susceptibility, are expected to increase risk for ocular hypertension and glaucoma.

4.
J R Soc Interface ; 19(192): 20220108, 2022 07.
Article En | MEDLINE | ID: mdl-35857902

The iris is a muscular organ whose deformations can cause primary angle-closure glaucoma (PACG), a leading cause of blindness. PACG risk assessment does not consider iridial biomechanical factors, despite their expected influence on iris deformations. Here, we exploited an existing biometric dataset consisting of near-infrared movies acquired during the pupillary light reflex (PLR) as a unique resource to study iris biomechanics. The PLR caused significant (greater than 100%) and essentially spatially uniform radial strains in the iris in vivo, consistent with previous findings. Inverse finite-element modelling showed that sphincter muscle tractions were ca fivefold greater than iridial stroma stiffness (range 4- to 13-fold, depending on sphincter muscle size). This muscle traction is greater than has been previously estimated, which may be due to methodological differences and/or to different patient populations in our study (European descent) versus previous studies (Asian); the latter possibility is of particular interest due to differential incidence rates of PACG in these populations. Our methodology is fast and inexpensive and may be a useful tool in understanding biomechanical factors contributing to PACG.


Glaucoma, Angle-Closure , Humans , Iridium , Iris/physiology , Muscle Contraction , Muscle, Smooth
5.
Prog Retin Eye Res ; 90: 101063, 2022 09.
Article En | MEDLINE | ID: mdl-35398015

Glaucoma is the leading cause of global irreversible blindness, necessitating research for new, more efficacious treatment options than currently exist. Trabecular meshwork (TM) cells play an important role in the maintenance and function of the aqueous outflow pathway, and studies have found that there is decreased cellularity of the TM in glaucoma. Regeneration of the TM with stem cells has been proposed as a novel therapeutic option by several reports over the last few decades. Stem cells have the capacity for self-renewal and the potential to differentiate into adult functional cells. Several types of stem cells have been investigated in ocular regenerative medicine: tissue specific stem cells, embryonic stem cells, induced pluripotent stem cells, and adult mesenchymal stem cells. These cells have been used in various glaucoma animal models and ex vivo models and have shown success in IOP homeostasis and TM cellularity restoration. They have also demonstrated stability without serious side effects for a significant period of time. Based on current knowledge of TM pathology in glaucoma and existing literature regarding stem cell regeneration of this tissue, we propose a human clinical study as the next step in understanding this potentially revolutionary treatment paradigm. The ability to protect and replace TM cells in glaucomatous eyes could change the field forever.


Glaucoma , Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Animals , Glaucoma/pathology , Glaucoma/surgery , Humans , Intraocular Pressure , Regeneration , Trabecular Meshwork
6.
Int J Nanomedicine ; 17: 1285-1307, 2022.
Article En | MEDLINE | ID: mdl-35345785

Purpose: Transplantation of stem cells to remodel the trabecular meshwork (TM) has become a new option for restoring aqueous humor dynamics and intraocular pressure homeostasis in glaucoma. In this study, we aimed to design a nanoparticle to label induced pluripotent stem cell (iPSC)-derived TM and improve the delivery accuracy and in vivo tracking efficiency. Methods: PLGA-SPIO-Cypate (PSC) NPs were designed with polylactic acid-glycolic acid (PLGA) polymers as the backbone, superparamagnetic iron oxide (SPIO) nanoparticles, and near-infrared (NIR) dye cypate. In vitro assessment of cytotoxicity, iron content after NPs labeling, and the dual-model monitor was performed on mouse iPSC-derived TM (miPSC-TM) cells, as well as immortalized and primary human TM cells. Cell function after labeling, the delivery accuracy, in vivo tracking efficiency, and its effect on lowering IOP were evaluated following miPSC-TM transplantation in mice. Results: Initial in vitro experiments showed that a single-time nanoparticles incubation was sufficient to label iPSC-derived TM and was not related to any change in both cell viability and fate. Subsequent in vivo evaluation revealed that the use of this nanoparticle not only improves the delivery accuracy of the transplanted cells in live animals but also benefits the dual-model tracking in the long term. More importantly, the use of the magnet triggers a temporary enhancement in the effectiveness of cell-based therapy in alleviating the pathologies associated with glaucoma. Conclusion: This study provided a promising approach for enhancing both the delivery and in vivo tracking efficiency of the transplanted cells, which facilitates the clinical translation of stem cell-based therapy for glaucoma.


Induced Pluripotent Stem Cells , Trabecular Meshwork , Animals , Intraocular Pressure , Magnetic Phenomena , Mice , Stem Cell Transplantation
7.
Sci Rep ; 11(1): 5088, 2021 03 03.
Article En | MEDLINE | ID: mdl-33658557

Adherent cells utilize local environmental cues to make decisions on their growth and movement. We have previously shown that HEK293 cells grown on the fibronectin stripe patterns were elongated. Here we show that Piezo1 function is involved in cell spreading. Piezo1 expressing HEK cells plated on fibronectin stripes elongated, while a knockout of Piezo1 eliminated elongation. Inhibiting Piezo1 conductance using GsMTx4 or Gd3+ blocked cell spreading, but the cells grew thin tail-like extensions along the patterns. Images of GFP-tagged Piezo1 showed plaques of Piezo1 moving to the extrusion edges, co-localized with focal adhesions. Surprisingly, in non-spreading cells Piezo1 was located primarily on the nuclear envelope. Inhibiting the Rho-ROCK pathway also reversibly inhibited cell extension indicating that myosin contractility is involved. The growth of thin extrusion tails did not occur in Piezo1 knockout cells suggesting that Piezo1 may have functions besides acting as a cation channel.


Cell Adhesion/genetics , Cell Movement/genetics , Cell Shape/genetics , Ion Channels/metabolism , Cations/metabolism , Cell Surface Extensions/genetics , Cell Surface Extensions/metabolism , Fibronectins/metabolism , Gene Knockout Techniques , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Ion Channels/genetics , Myosins/metabolism , Nuclear Envelope/metabolism , Transfection
8.
iScience ; 24(2): 102042, 2021 Feb 19.
Article En | MEDLINE | ID: mdl-33532718

Controlling intraocular pressure (IOP) remains the mainstay of glaucoma therapy. The trabecular meshwork (TM), the key tissue responsible for aqueous humor (AH) outflow and IOP maintenance, is very sensitive to mechanical forces. However, it is not understood whether Piezo channels, very sensitive mechanosensors, functionally influence AH outflow. Here, we characterize the role of Piezo1 in conventional AH outflow. Immunostaining and western blot analysis showed that Piezo1 is widely expressed by TM. Patch-clamp recordings in TM cells confirmed the activation of Piezo1-derived mechanosensitive currents. Importantly, the antagonist GsMTx4 for mechanosensitive channels significantly decreased steady-state facility, yet activation of Piezo1 by the specific agonist Yoda1 did not lead to a facility change. Furthermore, GsMTx4, but not Yoda1, caused a significant increase in ocular compliance, a measure of the eye's transient response to IOP perturbation. Our findings demonstrate a potential role for Piezo1 in conventional outflow, likely under pathological and rapid transient conditions.

9.
Adv Sci (Weinh) ; 8(2): 2001908, 2021 Jan.
Article En | MEDLINE | ID: mdl-33511001

Glaucoma is the leading cause of irreversible blindness. Current treatments use drugs or surgery to reduce intraocular pressure (IOP). In this study, a drug-free, nonsurgical method is developed that lowers IOP for 4 months without requiring daily patient adherence. The approach involves expanding the suprachoroidal space (SCS) of the eye with an in situ-forming hydrogel injected using a microneedle. This study tests the hypothesis that SCS expansion increases the drainage of aqueous humor from the eye via the unconventional pathway, which thereby lowers IOP. SCS injection of a commercial hyaluronic acid (HA) hydrogel reduces the IOP of normotensive rabbits for more than 1 month and an optimized HA hydrogel formulation enables IOP reduction for 4 months. Safety assessment by clinical ophthalmic examinations indicate the treatment is well tolerated. Histopathology shows minor hemorrhage and fibrosis at the site of injection. Further analysis by ultrasound biomicroscopy demonstrates a strong correlation of IOP reduction with SCS expansion. Outflow facility measurements show no difference in pressure-dependent outflow by the conventional pathway between treated and untreated eyes, supporting the hypothesis. In conclusion, SCS expansion with an in situ-forming hydrogel can enable extended IOP reduction for treating ocular hypertension and glaucoma without drugs or surgery.

...