Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.023
1.
Leukemia ; 2024 May 11.
Article En | MEDLINE | ID: mdl-38734786

TIF1ß/KAP1/TRIM28, a chromatin modulator, both represses and activates the transcription of genes in normal and malignant cells. Analyses of datasets on leukemia patients revealed that the expression level of TIF1ß was increased in patients with chronic myeloid leukemia at the blast crisis and acute myeloid leukemia. We generated a BCR::ABL1 conditional knock-in (KI) mouse model, which developed aggressive myeloid leukemia, and demonstrated that the deletion of the Tif1ß gene inhibited the progression of myeloid leukemia and showed longer survival than that in BCR::ABL1 KI mice, suggesting that Tif1ß drove the progression of BCR::ABL1-induced leukemia. In addition, the deletion of Tif1ß sensitized BCR::ABL1 KI leukemic cells to dasatinib. The deletion of Tif1ß decreased the expression levels of TIF1ß-target genes and chromatin accessibility peaks enriched with the Fosl1-binding motif in BCR::ABL1 KI stem cells. TIF1ß directly bound to the promoters of proliferation genes, such as FOSL1, in human BCR::ABL1 cells, in which TIF1ß and FOSL1 bound to adjacent regions of chromatin. Since the expression of Fosl1 was critical for the enhanced growth of BCR::ABL1 KI cells, Tif1ß and Fosl1 interacted to activate the leukemic transcriptional program in and cellular function of BCR::ABL1 KI stem cells and drove the progression of myeloid leukemia.

2.
Cancer Lett ; : 216949, 2024 May 08.
Article En | MEDLINE | ID: mdl-38729558

Hypomethylating agents (HMAs) are widely employed in the treatment of myeloid malignancies. However, unresponsive or resistant to HMA occurs in approximately 50% of patients. ASXL1, one of the most commonly mutated genes across the full spectrum of myeloid malignancies, has been reported to predict a lower overall response rate to HMAs, suggesting an essential need to develop effective therapeutic strategies for the patients with HMA failure. Here, we investigated the impact of ASXL1 on cellular responsiveness to decitabine treatment. ASXL1 deficiency increased resistance to decitabine treatment in AML cell lines and primary mouse bone marrow cells. Transcriptome sequencing revealed significant alterations in genes regulating cell cycle, apoptosis, and histone modification in ASXL1 deficient cells that resistant to decitabine. BIRC5 was identified as a potential target for overcoming decitabine resistance in ASXL1 deficient cells. Furthermore, our experimental evidence demonstrated that the small-molecule inhibitor of BIRC5 (YM-155) synergistically sensitized ASXL1 deficient cells to decitabine treatment. This study sheds light on the molecular mechanisms underlying the ASXL1-associated HMA resistance and proposes a promising therapeutic strategy for improving treatment outcomes in affected individuals.

4.
Anim Cells Syst (Seoul) ; 28(1): 237-250, 2024.
Article En | MEDLINE | ID: mdl-38741950

The role of ferroptosis-associated gene SLC7A11 in esophageal cancer progression is largely unknown, therefore, the effects of blocking SLC7A11 on esophageal squamous cell carcinoma (ESCC) cells are evaluated. Results showed that SLC7A11 was overexpressed in ESCC tissues both in mRNA and protein levels. Blocking SLC7A11 using Erastin suppressed the proliferation and colony formation of ESCC cells, decreased cellular ATP levels, and improved ROS production. Sixty-three SLC7A11-binding proteins were identified using the IP-MS method, and these proteins were enriched in four signaling pathways, including spliceosome, ribosome, huntington disease, and diabetic cardiomyopathy. The deubiquitinase inhibitors PR-619, GRL0617, and P 22077 could reduce at least 40% protein expression level of SLC7A11 in ESCC cells, and PR-619 and GRL0617 exhibited suppressive effects on the cell viability and colony formation ability of KYSE30 cells, respectively. Erastin downregulated GPX4 and DHODH and also reduced the levels of ß-catenin, p-STAT3, and IL-6 in ESCC cells. In conclusion, SLC7A11 was overexpressed in ESCC, and blocking SLC7A11 using Erastin mitigated malignant phenotypes of ESCC cells and downregulated key ferroptosis-associated molecules GPX4 and DHODH. The therapeutic potential of targeting SLC7A11 should be further evaluated in the future.

5.
Ecotoxicol Environ Saf ; 278: 116435, 2024 May 06.
Article En | MEDLINE | ID: mdl-38714084

The compound known as Sodium arsenite (NaAsO2), which is a prevalent type of inorganic arsenic found in the environment, has been strongly associated with liver fibrosis (LF), a key characteristic of nonalcoholic fatty liver disease (NAFLD), which has been demonstrated in our previous study. Our previous research has shown that exposure to NaAsO2 triggers the activation of hepatic stellate cells (HSCs), a crucial event in the development of LF. However, the molecular mechanism is still unknown. N6-methyladenosine (m6A) modification is the most crucial post-transcriptional modification in liver disease. Nevertheless, the precise function of m6A alteration in triggering HSCs and initiating LF caused by NaAsO2 remains unknown. Here, we found that NaAsO2 induced LF and HSCs activation through TGF-ß/Smad signaling, which could be reversed by TGF-ß1 knockdown. Furthermore, NaAsO2 treatment enhanced the m6A modification level both in vivo and in vitro. Significantly, NaAsO2 promoted the specific interaction of METTL14 and IGF2BP2 with TGF-ß1 and enhanced the TGF-ß1 mRNA stability. Notably, NaAsO2-induced TGF-ß/Smad pathway and HSC-t6 cells activation might be avoided by limiting METTL14/IGF2BP2-mediated m6A modification. Our findings showed that the NaAsO2-induced activation of HSCs and LF is made possible by the METTL14/IGF2BP2-mediated m6A methylation of TGF-ß1, which may open up new therapeutic options for LF brought on by environmental hazards.

6.
Heliyon ; 10(9): e30014, 2024 May 15.
Article En | MEDLINE | ID: mdl-38699009

Electroacupuncture (EA) is a neuroregulatory therapy for depression. Nonetheless, the effects of EA on the gut microbiome in mice models of depression are not well established. Here, using a chronic unpredictable mild stress (CUMS) model in mice, we evaluated the antidepressant effects of EA and changes in gut microbiota with behavioral tests and 16S rRNA gene sequencing. The results found that EA increased the time spent in the center area of the open-field test and the percentage of sucrose preference and reduced the immobility time in the tail suspension test in CUMS-treated mice. Furthermore, the genus Lachnoclostridium, Ruminococcaceae_UCG-002 and Rikenellaceae_RC9_gut_group were enriched in the CUMS group, which was positively correlated with depressive-like behaviors. Whereas phylum Actinobacteria and genus Allobaculum, Bifidobacterium, Dubosiella, Rikenella and Ileibacterium were enriched in the EA and CUMS + EA groups, all of which were negatively correlated with depressive-like behaviors. This study characterizes gut microbiota under EA treatment and provides new insights into the association of anti-depressive-like effects of EA and gut microbiota.

7.
Pharmgenomics Pers Med ; 17: 125-131, 2024.
Article En | MEDLINE | ID: mdl-38645702

Background: Vincristine (VCR)-induced peripheral neuropathy (VIPN) is a common adverse reaction during cancer treatment, typically characterized by numbness and paresthesias. This study aimed to report a rare case of VIPN with an atypical genotype, manifesting as grade 3 weakness of the lower limbs. Case Presentation: A 19-year-old man, diagnosed with alveolar rhabdomyosarcoma for 8 months, was transferred to our hospital for further treatment after the failure of first-line treatment. He developed severe long-standing weakness in both lower limbs and could not walk after four sessions of second-line chemotherapy. The diagnosis of VIPN was confirmed based on the patient's physical examination, imaging studies, electromyogram results, and treatment history. Furthermore, the pharmacogenetic analysis indicated that the patient harbored CYP3A4 rs2740574 TT genotypes. Conclusion: We have reported for the first time a VIPN patient whose main clinical manifestation is severe weakness in both lower limbs, accompanied by the CYP3A4 rs2740574 TT phenotype. This case may provide new information on the phenotypic features of VIPN, and may help to better understand the disease pathogenesis and contributing factors.

8.
Pharmacol Res ; 203: 107168, 2024 May.
Article En | MEDLINE | ID: mdl-38583689

Parkinson's disease (PD) is a common neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra and the aggregation of alpha-synuclein (α-syn). The central nervous system (CNS) has previously been considered as an immune-privileged area. However, studies have shown that the immune responses are involved in PD. The major histocompatibility complex (MHC) presents antigens from antigen-presenting cells (APCs) to T lymphocytes, immune responses will be induced. MHCs are expressed in microglia, astrocytes, and dopaminergic neurons. Single nucleotide polymorphisms in MHC are related to the risk of PD. The aggregated α-syn triggers the expression of MHCs by activating glia cells. CD4+ and CD8+ T lymphocytes responses and microglia activation are detected in brains of PD patients. In addiction immune responses further increase blood-brain barrier (BBB) permeability and T cell infiltration in PD. Thus, MHCs are involved in PD through participating in immune and inflammatory responses.


Major Histocompatibility Complex , Parkinson Disease , Humans , Parkinson Disease/immunology , Parkinson Disease/genetics , Animals , Major Histocompatibility Complex/immunology , alpha-Synuclein/immunology , alpha-Synuclein/metabolism , Blood-Brain Barrier/immunology , Blood-Brain Barrier/metabolism , Microglia/immunology , Microglia/metabolism
9.
Nat Commun ; 15(1): 3485, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664427

Spider silk exhibits an excellent combination of high strength and toughness, which originates from the hierarchical self-assembled structure of spidroin during fiber spinning. In this work, superfine nanofibrils are established in polyelectrolyte artificial spider silk by optimizing the flexibility of polymer chains, which exhibits combination of breaking strength and toughness ranging from 1.83 GPa and 238 MJ m-3 to 0.53 GPa and 700 MJ m-3, respectively. This is achieved by introducing ions to control the dissociation of polymer chains and evaporation-induced self-assembly under external stress. In addition, the artificial spider silk possesses thermally-driven supercontraction ability. This work provides inspiration for the design of high-performance fiber materials.


Nanofibers , Polyelectrolytes , Silk , Spiders , Animals , Nanofibers/chemistry , Spiders/chemistry , Silk/chemistry , Polyelectrolytes/chemistry , Tensile Strength , Muscles , Biomimetic Materials/chemistry
10.
Cancer Med ; 13(7): e7123, 2024 Apr.
Article En | MEDLINE | ID: mdl-38618943

OBJECTIVE: To evaluate the incidence, clinical laboratory characteristics, and gene mutation spectrum of Ph-negative MPN patients with atypical variants of JAK2, MPL, or CALR. METHODS: We collected a total of 359 Ph-negative MPN patients with classical mutations in driver genes JAK2, MPL, or CALR, and divided them into two groups based on whether they had additional atypical variants of driver genes JAK2, MPL, or CALR: 304 patients without atypical variants of driver genes and 55 patients with atypical variants of driver genes. We analyzed the relevant characteristics of these patients. RESULTS: This study included 359 patients with Ph-negative MPNs with JAK2, MPL, or CALR classical mutations and found that 55 (15%) patients had atypical variants of JAK2, MPL, or CALR. Among them, 28 cases (51%) were male, and 27 (49%) were female, with a median age of 64 years (range, 21-83). The age of ET patients with atypical variants was higher than that of ET patients without atypical variants [70 (28-80) vs. 61 (19-82), p = 0.03]. The incidence of classical MPL mutations in ET patients with atypical variants was higher than in ET patients without atypical variants [13.3% (2/15) vs. 0% (0/95), p = 0.02]. The number of gene mutations in patients with atypical variants of driver genes PV, ET, and Overt-PMF is more than in patients without atypical variants of PV, ET, and Overt-PMF [PV: 3 (2-6) vs. 2 (1-7), p < 0.001; ET: 4 (2-8) vs. 2 (1-7), p < 0.05; Overt-PMF: 5 (2-9) vs. 3 (1-8), p < 0.001]. The incidence of SH2B3 and ASXL1 mutations were higher in MPN patients with atypical variants than in those without atypical variants (SH2B3: 16% vs. 6%, p < 0.01; ASXL1: 24% vs. 13%, p < 0.05). CONCLUSION: These data indicate that classical mutations of JAK2, MPL, and CALR may not be completely mutually exclusive with atypical variants of JAK2, MPL, and CALR. In this study, 30 different atypical variants of JAK2, MPL, and CALR were identified, JAK2 G127D being the most common (42%, 23/55). Interestingly, JAK2 G127D only co-occurred with JAK2V617F mutation. The incidence of atypical variants of JAK2 in Ph-negative MPNs was much higher than that of the atypical variants of MPL and CALR. The significance of these atypical variants will be further studied in the future.


Laboratories, Clinical , Transcription Factors , Humans , Female , Male , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Mutation , Receptors, Thrombopoietin/genetics , Janus Kinase 2/genetics
11.
J Hematol ; 13(1-2): 12-22, 2024 Apr.
Article En | MEDLINE | ID: mdl-38644985

Background: Polycythemia vera (PV) is a myeloproliferative neoplasm. Ropeginterferon alfa-2b is a new-generation polyethylene glycol-conjugated proline-interferon. It is approved for the treatment of PV at a starting dose of 100 µg (50 µg for patients receiving hydroxyurea (HU)) and dose titrations up to 500 µg by 50 µg increments. The study was aimed at assessing its efficacy and safety at a higher starting dose and simpler intra-patient dose escalation. Methods: Forty-nine patients with PV having HU intolerance from major hospitals in China were treated biweekly with an initial dose of 250 µg, followed by 350 µg and 500 µg thereafter if tolerated. Complete hematological response (CHR) was assessed every 12 weeks based on the European LeukemiaNet criteria. The primary endpoint was the CHR rate at week 24. The secondary endpoints included CHR rates at weeks 12, 36 and 52, changes of JAK2V617F allelic burden, time to first CHR, and safety assessments. Results: The CHR rates were 61.2%, 69.4% and 71.4% at weeks 24, 36, and 52, respectively. Mean allele burden of the driver mutation JAK2V617F declined from 58.5% at baseline to 30.1% at 52 weeks. Both CHR and JAK2V617F allele burden reduction showed consistent increases over the 52 weeks of the treatment. Twenty-nine patients (63.0%) achieved partial molecular response (PMR) and two achieved complete molecular response (CMR). The time to CHR was rapid and median time was 5.6 months according to central lab results. The CHRs were durable and median CHR duration time was not reached at week 52. Mean spleen index reduced from 55.6 cm2 at baseline to 50.2 cm2 at week 52. Adverse events (AEs) were mostly mild or moderate. Most common AEs were reversible alanine aminotransferase and aspartate aminotransferase increases, which were not associated with significant elevations in bilirubin levels or jaundice. There were no grade 4 or 5 AEs. Grade 3 AEs were reversible and manageable. Only one AE led to discontinuation. No incidence of thromboembolic events was observed. Conclusion: The 250-350-500 µg dosing regimen was well tolerated and effectively induced CHR and MR and managed spleen size increase. Our findings demonstrate that ropeginterferon alfa-2b at this dosing regimen can provide an effective management of PV and support using this dosing regimen as a treatment option.

12.
Int J Surg ; 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38626431

BACKGROUND: The prognostic value of carbohydrate antigen 19-9 (CA19-9) is known to be affected by elevated bilirubin levels in patients with gallbladder carcinoma (GBC). The clinical significance of changes in the ratio of CA19-9 levels to total bilirubin (TB) levels in patients with GBC after curative-intent resection remains unknown. The aim of this study was to determine the prognostic value of changes in preoperative and postoperative CA19-9/TB ratio in these patients. METHODS: Prospectively colleced data on consecutive patients who underwent curative-intent resection for GBC between January 2015 and December 2020 stored in a multicenter database from 10 hospitals were analysed in this retrospective cohort study. Based on the adjusted CA19-9 defined as the ratio of CA19-9 to TB, and using 2×103 U/µmol as the upper normal value, patients were divided into a normal group (with normal preoperative and postoperative adjusted CA19-9), a normalization group (with abnormal preoperative but normal postoperative adjusted CA19-9), and a non-normalization group (with abnormal postoperative adjusted CA19-9). The primary outcomes were overall survival (OS) and recurrence-free survival (RFS). The log-rank test was used to compare OS and RFS among the groups. The Cox regression model was used to determine factors independently associated with OS and RFS. RESULTS: The normal group (n=179 patients) and the normalization group (n=73 patients) had better OS and RFS than the non-normalization group (n=65 patients) (the 3-year OS rates 72.0%, 58.4% and 24.2%, respectively; the RFS rates 54.5%, 25.5% and 11.8%, respectively; both P<0.001). There were no significant differences between the normal and the normalization groups in OS and RFS (OS, P=0.255; RFS, P=0.130). Cox regression analysis confirmed that the non-normalization group was independently associated with worse OS and RFS. Subgroup analysis revealed that the non-normalization group of patients who received adjuvant therapy had significantly improved OS and RFS as compared to those who did not receive adjuvant therapy (OS, P=0.025; RFS, P=0.003). CONCLUSIONS: Patients with GBC who underwent curative-intent surgical resection with postoperative abnormal levels of adjusted CA19-9 (the CA19-9/TB ratio) were associated with poorer long-term survival outcomes. Adjuvant therapy after surgery improved the long-term outcomes of these patients.

13.
Sci Total Environ ; 926: 172114, 2024 May 20.
Article En | MEDLINE | ID: mdl-38561127

The microbial hosts of antibiotic resistance genes (ARGs) found epiphytically on plant materials could grow and flourish during silage fermentation. This study employed metagenomic analysis and elucidated the occurrence and transmission mechanisms of ARGs and their microbial hosts in whole-crop corn silage inoculated with homofermentative strain Lactiplantibacillus plantarum or heterofermentative strain Lentilactobacillus buchneri ensiled under different temperature (20 and 30 °C). The results revealed that the corn silage was dominated by Lactobacillus, Leuconostoc, Lentilactobacillus, and Latilactobacillus. Both the ensiling temperature and inoculation had greatly modified the silage microbiota. However, regardless of the ensiling temperature, L. buchneri had significantly higher ARGs, while it only exhibited significantly higher mobile genetic elements (MGEs) in low temperature treatments. The microbial community of the corn silage hosted highly diverse form of ARGs, which were primarily MacB, RanA, bcrA, msbA, TetA (58), and TetT and mainly corresponded to macrolides and tetracyclines drug classes. Plasmids were identified as the most abundant MGEs with significant correlation with some high-risk ARGs (tetM, TolC, mdtH, and NorA), and their abundances have been reduced by ensiling process. Furthermore, higher temperature and L. buchneri reduced abundances of high-risk ARGs by modifying their hosts and reduced their transmission in the silage. Therefore, ensiling, L. buchneri inoculation and higher storage temperature could improve the biosafety of corn silage.


Lactobacillales , Silage , Silage/analysis , Silage/microbiology , Zea mays/microbiology , Lactobacillales/genetics , Anti-Bacterial Agents , Temperature , Fermentation
14.
Microb Biotechnol ; 17(4): e14454, 2024 Apr.
Article En | MEDLINE | ID: mdl-38568756

This study investigates the effectiveness of an exopolysaccharide (EPS)-producing strain (Lactiplantibacillus plantarum L75) alone or in combination with Saccharomyces cerevisiae on the fermentation characteristics, antioxidant capacities and microbial community successions of oat silage stored at various temperatures. A rapid decrease in pH and lactic acid accumulation was observed in silages treated with L. plantarum and S. cerevisiae (LS) as early as 3 days of ensiling (p < 0.05). Over the ensiling period of 7-60 days, L. plantarum (L)-inoculated groups showed the lowest pH, lowest ammonia nitrogen and the highest amount of lactic acid regardless of the storage temperatures. When the oat silage was stored at 15°C, LS-inoculated group exhibited a higher superoxide dismutase (SOD) activity than control and L-inoculated group. Furthermore, the proportion of Lactiplantibacillus in the combined inoculation group increased by 65.42% compared to the L-inoculated group (33.26%). Fungal community data revealed abundant Penicillium carneum in the control and L-inoculated groups stored at 15°C. Conclusively, these results showed that combined inoculation of L. plantarum L75 and S. cerevisiae improved the fermentation quality of oat silage at 15°C, thus proposing a technique for enhancing the fermentation quality of silage in regions with low temperatures during harvest season.


Lactobacillus plantarum , Silage , Silage/microbiology , Saccharomyces cerevisiae , Lactobacillus , Avena , Fermentation , Temperature , Lactic Acid
15.
Biodes Res ; 6: 0031, 2024.
Article En | MEDLINE | ID: mdl-38572349

Protein engineering aimed at increasing temperature tolerance through iterative mutagenesis and high-throughput screening is often labor-intensive. Here, we developed a deep evolution (DeepEvo) strategy to engineer protein high-temperature tolerance by generating and selecting functional sequences using deep learning models. Drawing inspiration from the concept of evolution, we constructed a high-temperature tolerance selector based on a protein language model, acting as selective pressure in the high-dimensional latent spaces of protein sequences to enrich those with high-temperature tolerance. Simultaneously, we developed a variant generator using a generative adversarial network to produce protein sequence variants containing the desired function. Afterward, the iterative process involving the generator and selector was executed to accumulate high-temperature tolerance traits. We experimentally tested this approach on the model protein glyceraldehyde 3-phosphate dehydrogenase, obtaining 8 variants with high-temperature tolerance from just 30 generated sequences, achieving a success rate of over 26%, demonstrating the high efficiency of DeepEvo in engineering protein high-temperature tolerance.

16.
Phys Life Rev ; 49: 100-111, 2024 Mar 24.
Article En | MEDLINE | ID: mdl-38574584

Brain disorders are a series of conditions with damage or loss of neurons, such as Parkinson's disease (PD), Alzheimer's disease (AD), or drug dependence. These individuals have gradual deterioration of cognitive, motor, and other central nervous system functions affected. This degenerative trajectory is intricately associated with dysregulations in neurotransmitter systems. Positron Emission Tomography (PET) imaging, employing radiopharmaceuticals and molecular imaging techniques, emerges as a crucial tool for detecting brain biomarkers. It offers invaluable insights for early diagnosis and distinguishing brain disorders. This article comprehensively reviews the application and progress of conventional and novel PET imaging agents in diagnosing brain disorders. Furthermore, it conducts a thorough analysis on merits and limitations. The article also provides a forward-looking perspective in the future development directions of PET imaging agents for diagnosing brain disorders and proposes potential innovative strategies. It aims to furnish clinicians and researchers with an all-encompassing overview of the latest advancements and forthcoming trends in the utilization of PET imaging for diagnosing brain disorders.

17.
Case Rep Ophthalmol Med ; 2024: 5519361, 2024.
Article En | MEDLINE | ID: mdl-38566845

Background: Here, we report a case of a male patient with bilateral focal choroidal excavation (FCE) and central serous chorioretinopathy (CSC). A 33-year-old man complained of mild blurring of vision in the right eye. Optical coherence tomography (OCT) revealed FCE in both eyes, with subretinal fluid in both eyes and serous pigment epithelial detachment in the right eye. Standard laser fluence (50 J/cm2) was used in the right eye, and a subthreshold micropulse laser (SML) was simultaneously used in the left eye. Follow-up visits were recommended. At his last visit (5 months after treatment), the visual acuity was 16/20 in the right eye and 20/20 in the left eye and OCT showed a completed resolution of SRF. Conclusion: FCE is defined as a localized depression of the choroid detected by OCT. It may be congenital or acquired secondarily. We present a case of uncommon focal choroidal excavation and central serous chorioretinopathy (CSC) coexisting in both eyes at a relatively young age in which visual acuity was improved and subretinal fluid (SRF) completely resolved with laser treatment. Timely treatment can promote SRF absorption and improve vision.

18.
Microorganisms ; 12(4)2024 Apr 06.
Article En | MEDLINE | ID: mdl-38674689

The increasing production and utilization of polycyclic aromatic hydrocarbons (PAHs) and commercial silver nanoparticles (AgNPs) have raised concerns about their potential environmental release, with coastal sediments as a substantial sink. To better understanding the effects of these contaminants on denitrification processes in coastal marine sediments, a short-term exposure simulation experiment was conducted. We investigated the effects of single and combined contamination of phenanthrene (Phe) and AgNPs on denitrification processes in a coastal marine sediment. Results showed that all contaminated treatment groups had different degrees of inhibitory effect on denitrification activity, denitrifying enzyme activity, total bacteria count and denitrifying genes. The inhibitory effect sequence of each treatment group was combined treatment > AgNPs treatment > Phe treatment. Moreover, the inhibitory effects of denitrifying genes were much larger than that of total bacteria count, indicating that the pollutants had specific toxic effects on denitrifying bacteria. The sequence of sensitivity of three reduction process to pollutants was N2O > NO2- > NO3-. All contaminated treatment groups could increase NO3-, NO2- and N2O accumulation. Furthermore, according to the linear relationship between functional gene or reductase and denitrification process, we also found that the abundance of denitrifying genes could better predict the influence of Phe and AgNPs on sediment denitrification than the denitrifying bacterial diversity. In addition, at the genus level, the community structure of nirS- and nosZ-type denitrifying bacteria changed dramatically, while changes at the phylum level were comparatively less pronounced. Single and combined contamination of Phe and AgNPs could reduce the dominance of Pseudomonas, which may lead to a potential slow-down in the degradation of Phe and inhibition of denitrification, especially the combined contamination. Overall, our study revealed that combined contamination of Phe and AgNPs could lead to an increase in NO3-, NO2- and N2O accumulation in coastal sediment, which poses a risk of eutrophication in coastal areas, exacerbates the greenhouse effect and has adverse effects on global climate change.

19.
Ecotoxicol Environ Saf ; 276: 116324, 2024 May.
Article En | MEDLINE | ID: mdl-38636260

Fungal laccase has strong ability in detoxification of many environmental contaminants. A putative laccase gene, LeLac12, from Lentinula edodes was screened by secretome approach. LeLac12 was heterogeneously expressed and purified to characterize its enzymatic properties to evaluate its potential use in bioremediation. This study showed that the extracellular fungal laccase from L. edodes could effectively degrade tetracycline (TET) and the synthetic dye Acid Green 25 (AG). The growth inhibition of Escherichia coli and Bacillus subtilis by TET revealed that the antimicrobial activity was significantly reduced after treatment with the laccase-HBT system. 16 transformation products of TET were identified by UPLC-MS-TOF during the laccase-HBT oxidation process. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that LeLac12 could completely mineralize ring-cleavage products. LeLac12 completely catalyzed 50 mg/L TET within 4 h by adding AG (200 mg/L), while the degradation of AG was above 96% even in the co-contamination system. Proteomic analysis revealed that central carbon metabolism, energy metabolism, and DNA replication/repair were affected by TET treatment and the latter system could contribute to the formation of multidrug-resistant strains. The results demonstrate that LeLac12 is an efficient and environmentally method for the removal of antibiotics and dyes in the complex polluted wastewater.


Biodegradation, Environmental , Coloring Agents , Laccase , Proteomics , Shiitake Mushrooms , Tetracycline , Laccase/metabolism , Laccase/genetics , Tetracycline/toxicity , Tetracycline/pharmacology , Coloring Agents/toxicity , Coloring Agents/chemistry , Escherichia coli/drug effects , Escherichia coli/genetics , Bacillus subtilis/drug effects , Water Pollutants, Chemical/toxicity , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/pharmacology
20.
Sensors (Basel) ; 24(7)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38610524

In this manuscript, we present a novel deployment protection method aimed at safeguarding aeronautical radio altimeters (RAs) from interference caused by fifth-generation (5G) telecommunication base stations (BSs). Our methodology involves an integrated interference model for defining prohibited zones and utilizes power control and angle shutoff methods to mitigate interference. First, to ensure reliable protection, we define both horizontal and vertical prohibited zones and investigate their variations to immunize RA against 5G interference. Second, we validate the effectiveness of the model in various operational scenarios, analyzing the influence of factors such as base station types, antenna parameters, flight altitude, and aircraft attitudes to cover a wide range of real-world scenarios. Third, to mitigate interference, we propose and analyze the power control and angle shutoff methods through simulation for the RMa prohibited zone. Our results demonstrate the efficacy of the deployment protection method in safeguarding RAs from 5G interference, providing guidance for interference protection during civil aviation operations and base station deployment near airports.

...