Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 242(Pt 1): 124726, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37172702

RESUMEN

Plastic waste is one cause of climate change. To solve this problem, packaging films are increasingly produced from biodegradable polymers. Eco-friendly carboxymethyl cellulose and its blends have been developed for such a solution. Herein, a unique strategy is demonstrated to improve the mechanical and barrier properties of carboxymethyl cellulose/poly(vinyl alcohol) (CMC/PVA) blended films for the packaging of nonfood dried products. The blended films were impregnated with buckypapers containing different combinations of multiwalled carbon nanotubes, two-dimensional molybdenum disulfide (2D MoS2) nanoplatelets, and helical carbon nanotubes (HCNTs). Compared to the blend, the polymer composite films exhibit significant increases in tensile strength (~105 %, from 25.53 to 52.41 MPa), Young's modulus (~297 %, from 155.48 to 617.48 MPa), and toughness (~46 %, from 6.69 to 9.75 MJ m-3). Polymer composite films containing HCNTs in buckypapers offer the highest toughness. For barrier properties, the polymer composite films are opaque. The water vapor transmission rate of the blended films decreases (~52 %, from 13.09 to 6.25 g h-1 m-2). Moreover, the maximum thermal-degradation temperature of the blend rises from 296 to 301 °C, especially for the polymer composite films with buckypapers containing MoS2 nanosheets that contribute to the barrier effect for both water vapor and thermal-decomposition gas molecules.


Asunto(s)
Nanotubos de Carbono , Alcohol Polivinílico , Carboximetilcelulosa de Sodio , Vapor , Molibdeno , Celulosa , Resistencia a la Tracción
2.
Shanghai Kou Qiang Yi Xue ; 30(6): 579-584, 2021 Dec.
Artículo en Chino | MEDLINE | ID: mdl-35587010

RESUMEN

PURPOSE: To explore the influence of naringenin on osteogenic differentiation of bone mesenchymal stem cells(BMSCs), and the role of SDF-1α/CXCR4 signaling axis in the osteogenic differentiation by naringenin. METHODS: BMSCs of the rats were isolated,cultured and tested. CCK-8 assay was used to explore the proliferation ability of BMSCs in different concentrations of naringenin, and alkaline phosphatase(ALP) activity was detected. RT-qPCR was used to detect the mRNA expression of ALP, OCN, CXCR4 and SDF-1α in different groups. The expressions of CXCR4 and SDF-1α protein in BMSCs during osteogenic differentiation in different experimental groups were detected by ELISA. SPSS 21.0 software package was used for statistical analysis of the data. RESULTS: The results of cell identification showed that the cultured cells were BMSCs. At 1 d and 3 d, all concentrations of naringenin had no significant effect on the proliferation of BMSCs; and at 5 d, 50 µg/mL of naringenin promoted proliferation of BMSCs;furthermore, at 7 d, all concentrations of naringenin promoted proliferation of BMSCs(P<0.05). ALP activity value gradually increased in each concentration over time. From the RT-qPCR experiment, the mRNA expression of ALP, OCN, CXCR4 and SDF-1α in the naringenin group and the osteogenic induction group was significantly increased compared with the medium group(P<0.05). ELISA assay showed that the protein expressions of CXCR4 and SDF-1α increased gradually in the four groups as time went on and the expression of two proteins was the highest in 100 µg/mL naringenin group. CONCLUSIONS: Naringenin can promote the proliferation and osteogenic differentiation of BMSCs. SDF-1α/CXCR4 signaling axis is involved in the osteogenic differentiation of BMSCs by naringenin,particularly in the early stage of BMSCs osteogenic differentiation.


Asunto(s)
Quimiocina CXCL12 , Osteogénesis , Animales , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/farmacología , Flavanonas , ARN Mensajero , Ratas , Receptores CXCR4/genética
3.
Nanotechnology ; 31(47): 475710, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32975215

RESUMEN

Thermally conductive composites have attracted great attention in virtue of their crucial role in thermal management. In this work, laminated composites were prepared by laying graphite films (GF) and carbon fiber fabrics (CF) in a certain order, then penetrating thermoplastic polyurethane (TPU), finally hot-pressing. In order to enhance the inter-layer strength, the graphite films were perforated with arrays of 1 mm holes in diameter which have intervals of 4 mm and permit the seeping of liquid TPU through them. The in-plane thermal conductivity (TC) of composite reaches 242 W m-1 K-1 with the loading of 25 vol% GF and 60 vol% CF, which is 1210 times that of pure TPU. The great improvement of TC is ascribed to the thermal conductive pathways formed by continuous GF with ultrahigh TC. The addition of CF enhances markedly the mechanical properties of composites. Bending strength and modulus of composites are 5.56 and 17.09 times that of pure TPU, respectively. The proposed design and manufacture method are facile and effective to obtain polymeric composites simultaneously with high TC and good mechanical properties.

4.
RSC Adv ; 9(59): 34214-34226, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-35529966

RESUMEN

The local corrosion behavior and mechanism of Ni-P coatings in a 3.5 wt% sodium chloride solution with different flow speeds (0 m s-1, 0.5 m s-1, 1 m s-1) were investigated through a wire beam electrode (WBE) with morphological, elemental and electrochemical analyses as well as numerical simulations. It was found that the microstructure of the Ni-P coating was in the shape of broccoli and possessed satisfactory compactness and uniformity. The numerical simulations showed that the speed increased and the static pressure decreased at the local area. Combined with WBE, it was found that the average corrosion potential decreased at that area. The results indicated that the corrosion tendency and corrosion rate of the Ni-P coating were larger at higher speeds, and the corrosion resistance could be improved by the electroless Ni-P coating. WBE was helpful in revealing the local electrochemical information of the Ni-P coating.

5.
ACS Appl Mater Interfaces ; 9(31): 26447-26459, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28730803

RESUMEN

To meet the increasing demands for effective heat management of electronic devices, a graphene-based polymeric composite is considered to be one of the candidate materials owing to the ultrahigh thermal conductivity (TC) of graphene. However, poor graphene dispersion, low quality of exfoliated graphene, and strong phonon scattering at the graphene/matrix interface restrict the heat dissipation ability of graphene-filled composites. Here, a facile and versatile approach to bond graphene foam (GF) with polydimethylsiloxane (PDMS) is proposed, and the corresponding composite with considerable improvement in TC and insulativity is fabricated. First, three-dimensional GF was coated with polydopamine (PDA) via π-π stack and functional groups from PDA reacted with 3-aminopropyltriethoxysilane (APTS). Then, the modified GF was compressed (c-GF) to enhance density and infiltrated with PDMS to get the c-GF/PDA/APTS/PDMS composite. As a result, these processes endow the composite with high TC of in-plane 28.77 W m-1 K-1 and out-of-plane 1.62 W m-1 K-1 at 11.62 wt % GF loading. Besides, the composite manifests obvious improvement in mechanical properties, thermal stability, and insulativity compared to neat PDMS and GF/PDMS composite. An attempt to use the composite for cooling a ceramic heater is found to be successful. Above results open a way for such composites to be applied for the heat management of electronic devices.

6.
Sci Rep ; 5: 10983, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26084051

RESUMEN

Aluminum electrolytic capacitors (AECs) are widely used for alternating current (ac) line-filtering. However, their bulky size is becoming more and more incompatible with the rapid development of portable electronics. Here we report a scalable process to fabricate miniaturized graphene-based ac line-filters on flexible substrates at room temperature. In this work, graphene oxide (GO) is reduced by patterned metal interdigits at room temperature and used directly as the electrode material. The as-fabricated device shows a phase angle of -75.4° at 120 Hz with a specific capacitance of 316 µF/cm(2) and a RC time constant of 0.35 ms. In addition, it retains 97.2% of the initial capacitance after 10000 charge/discharge cycles. These outstanding performance characteristics of our device demonstrate its promising to replace the conventional AECs for ac line filtering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA