Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Beijing Da Xue Xue Bao Yi Xue Ban ; 55(6): 975-981, 2023 Dec 18.
Artículo en Chino | MEDLINE | ID: mdl-38101777

RESUMEN

OBJECTIVE: To investigate the regulatory effect of interferon-α (IFN-α) on the apoptosis and killing function of CD56dimCD57+ natural killer (NK) cells in systemic lupus erythematosus (SLE) patients, and to explore the specific mechanism. METHODS: A total of sixty-four newly treated SLE patients and sixteen healthy controls (HC) enrolled in the Second Hospital of Dalian Medical University were selected as the research subjects. And the gene expression levels of molecules related to NK cell-killing function were detected by real-time quantitative polymerase chain reaction. CD56dimCD57+ NK cells were co-cultured with the K562 cells, and the apoptotic K562 cells were labeled with Annexin-Ⅴ and 7-amino-actinomycin D. Peripheral blood mononuclear cells were treated with 20, 40, and 80 µmol/L hydrogen peroxide (H2O2), and treated without H2O2 as control, the expression level of perforin (PRF) was detected by flow cytometry. The concentration of IFN-α in serum was determined by enzyme linked immunosorbent assay. The expression levels of IFN-α receptors (IFNAR) on the surface of CD56dimCD57+ NK cells were detected by flow cytometry, and were represented by mean fluorescence intensity (MFI). CD56dimCD57+ NK cells were treated with 1 000 U/mL IFN-α for 24, 48 and 72 h, and no IFN-α treatment was used as the control, the apoptosis and the expression levels of mitochondrial reactive oxygen species (mtROS) were measured by flow cytometry and represented by MFI. RESULTS: Compared with HC(n=3), the expression levels of PRF1 gene in peripheral blood NK cells of the SLE patients (n=3) were decreased (1.24±0.41 vs. 0.57±0.12, P=0.05). Compared with HC(n=5), the ability of peripheral blood CD56dimCD57+ NK cells in the SLE patients (n=5) to kill K562 cells was significantly decreased (58.61%±10.60% vs. 36.74%±6.27%, P < 0.01). Compared with the control (n=5, 97.51%±1.67%), different concentrations of H2O2 treatment significantly down-regulated the PRF expression levels of CD56dimCD57+ NK cells in a dose-dependent manner, the 20 µmol/L H2O2 PRF was 83.23%±8.48% (n=5, P < 0.05), the 40 µmol/L H2O2 PRF was 79.53%±8.56% (n=5, P < 0.01), the 80 µmol/L H2O2 PRF was 76.67%±7.16% (n=5, P < 0.01). Compared to HC (n=16), the serum IFN-α levels were significantly increased in the SLE patients (n=45) with moderate to high systemic lupus erythematosus disease activity index (SLEDAI≥10) [(55.07±50.36) ng/L vs. (328.2±276.3) ng/L, P < 0.001]. Meanwhile, compared with HC (n=6), IFNAR1 expression in peripheral blood CD56dimCD57+ NK cells of the SLE patients (n=6) were increased (MFI: 292.7±91.9 vs. 483.2±160.3, P < 0.05), and compared with HC (n=6), IFNAR2 expression in peripheral blood CD56dimCD57+ NK cells of the SLE patients (n=7) were increased (MFI: 643.5±113.7 vs. 919.0±246.9, P < 0.05). Compared with control (n=6), the stimulation of IFN-α (n=6) significantly promoted the apoptosis of CD56dimCD57+ NK cells (20.48%±7.01% vs. 37.82%±5.84%, P < 0.05). In addition, compared with the control (n=4, MFI: 1 049±174.5), stimulation of CD56dimCD57+ NK cells with IFN-α at different times significantly promoted the production of mtROS in a time-dependent manner, 48 h MFI was 3 437±1 472 (n=4, P < 0.05), 72 h MFI was 6 495±1 089 (n=4, P < 0.000 1), but there was no significant difference at 24 h of stimulation. CONCLUSION: High serum IFN-α level in SLE patients may induce apoptosis by promoting mtROS production and inhibit perforin expression, which can down-regulate CD56dimCD57+ NK killing function.


Asunto(s)
Interferón-alfa , Lupus Eritematoso Sistémico , Humanos , Interferón-alfa/farmacología , Interferón-alfa/metabolismo , Perforina/metabolismo , Leucocitos Mononucleares/metabolismo , Peróxido de Hidrógeno/metabolismo , Interferón gamma/metabolismo , Antígeno CD56/metabolismo , Células Asesinas Naturales/metabolismo
2.
Redox Biol ; 67: 102867, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37688977

RESUMEN

Increasing evidence shows that metabolic factors are involved in the pathological process of osteoarthritis (OA). Lactate has been shown to contribute to the onset and progression of diseases. While whether lactate is involved in the pathogenesis of OA through impaired chondrocyte function and its mechanism remains unclear. This study confirmed that serum lactate levels were elevated in OA patients compared to healthy controls and were positively correlated with synovial fluid lactate levels, which were also correlated with fasting blood glucose, high-density lipoprotein, triglyceride. Lactate treatment could up-regulate expressions of the lactate receptor hydroxy-carboxylic acid receptor 1 (HCAR1) and lactate transporters in human chondrocytes. We demonstrated the dual role of lactate, which as a metabolite increased NADPH levels by shunting glucose metabolism to the pentose phosphate pathway, and as a signaling molecule up-regulated NADPH oxidase 4 (NOX4) via activating PI3K/Akt signaling pathway through receptor HCAR1. Particularly, lactate could promote reactive oxygen species (ROS) generation and chondrocyte damage, which was attenuated by pre-treatment with the NOX4 inhibitor GLX351322. We also confirmed that lactate could increase expression of catabolic enzymes (MMP-3/13, ADAMTS-4), reduce the synthesis of type II collagen, promote expression of inflammatory cytokines (IL-6, CCL-3/4), and induce cellular hypertrophy and aging in chondrocytes. Subsequently, we showed that chondrocyte damage mediated by lactate could be reversed by pre-treatment with N-Acetyl-l-cysteine (NAC, ROS scavenger). Finally, we further verified in vivo that intra-articular injection of lactate in Sprague Dawley (SD) rat models could damage cartilage and exacerbate the progression of OA models that could be countered by the NOX4 inhibitor GLX351322. Our study highlights the involvement of lactate as a metabolic factor in the OA process, providing a theoretical basis for potential metabolic therapies of OA in the future.


Asunto(s)
Condrocitos , Osteoartritis , Ratas , Animales , Humanos , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Condrocitos/metabolismo , NADP/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ácido Láctico/metabolismo , Células Cultivadas , Ratas Sprague-Dawley , Osteoartritis/genética , Osteoartritis/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...