Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
mBio ; 15(2): e0189823, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38259065

Microbial species capable of co-existing with healthy individuals, such as the commensal fungus Candida albicans, exploit multifarious strategies to evade our immune defenses. These strategies include the masking of immunoinflammatory pathogen-associated molecular patterns (PAMPs) at their cell surface. We reported previously that C. albicans actively reduces the exposure of the proinflammatory PAMP, ß-1,3-glucan, at its cell surface in response to host-related signals such as lactate and hypoxia. Here, we show that clinical isolates of C. albicans display phenotypic variability with respect to their lactate- and hypoxia-induced ß-1,3-glucan masking. We have exploited this variability to identify responsive and non-responsive clinical isolates. We then performed RNA sequencing on these isolates to reveal genes whose expression patterns suggested potential association with lactate- or hypoxia-induced ß-1,3-glucan masking. The deletion of two such genes attenuated masking: PHO84 and NCE103. We examined NCE103-related signaling further because NCE103 has been shown previously to encode carbonic anhydrase, which promotes adenylyl cyclase-protein kinase A (PKA) signaling at low CO2 levels. We show that while CO2 does not trigger ß-1,3-glucan masking in C. albicans, the Sch9-Rca1-Nce103 signaling module strongly influences ß-1,3-glucan exposure in response to hypoxia and lactate. In addition to identifying a new regulatory module that controls PAMP exposure in C. albicans, our data imply that this module is important for PKA signaling in response to environmental inputs other than CO2.IMPORTANCEOur innate immune defenses have evolved to protect us against microbial infection in part via receptor-mediated detection of "pathogen-associated molecular patterns" (PAMPs) expressed by invading microbes, which then triggers their immune clearance. Despite this surveillance, many microbial species are able to colonize healthy, immune-competent individuals, without causing infection. To do so, these microbes must evade immunity. The commensal fungus Candida albicans exploits a variety of strategies to evade immunity, one of which involves reducing the exposure of a proinflammatory PAMP (ß-1,3-glucan) at its cell surface. Most of the ß-1,3-glucan is located in the inner layer of the C. albicans cell wall, hidden by an outer layer of mannan fibrils. Nevertheless, some ß-1,3-glucan can become exposed at the fungal cell surface. However, in response to certain specific host signals, such as lactate or hypoxia, C. albicans activates an anticipatory protective response that decreases ß-1,3-glucan exposure, thereby reducing the susceptibility of the fungus to impending innate immune attack. Here, we exploited the natural phenotypic variability of C. albicans clinical isolates to identify strains that do not display the response to ß-1,3-glucan masking signals observed for the reference isolate, SC5314. Then, using genome-wide transcriptional profiling, we compared these non-responsive isolates with responsive controls to identify genes potentially involved in ß-1,3-glucan masking. Mutational analysis of these genes revealed that a sensing module that was previously associated with CO2 sensing also modulates ß-1,3-glucan exposure in response to hypoxia and lactate in this major fungal pathogen of humans.


Candida albicans , Glucans , beta-Glucans , Humans , Candida albicans/metabolism , Glucans/metabolism , Carbon Dioxide/metabolism , Pathogen-Associated Molecular Pattern Molecules , Hypoxia/metabolism , Lactates/metabolism , Cell Wall/metabolism
2.
Fungal Biol ; 127(9): 1291-1297, 2023 09.
Article En | MEDLINE | ID: mdl-37821151

Many species of medically important fungi are prolific in the formation of asexual spores. Spores undergo a process of active swelling and cell wall remodelling before a germ tube is formed and filamentous growth ensues. Highly elongated germ tubes are known to be difficult to phagocytose and pose particular challenges for immune phagocytes. However, the significance of the earliest stages of spore germination during immune cell interactions has not been investigated and yet this is likely to be important for defence against sporogenous fungal pathogens. We show here that macrophages restrict the early phases of the spore germination process of Aspergillus fumigatus and Mucor circinelloides including the initial phase of spore swelling, spore germination and early polarised growth. Macrophages are therefore adept at retarding germination as well as subsequent vegetative growth which is likely to be critical for immune surveillance and protection against sporulating fungi.


Germination , Macrophages , Spores, Fungal , Macrophages/microbiology , Phagocytes , Phagosomes
4.
PLoS Pathog ; 19(7): e1011505, 2023 07.
Article En | MEDLINE | ID: mdl-37428810

Most microbes have developed responses that protect them against stresses relevant to their niches. Some that inhabit reasonably predictable environments have evolved anticipatory responses that protect against impending stresses that are likely to be encountered in their niches-termed "adaptive prediction". Unlike yeasts such as Saccharomyces cerevisiae, Kluyveromyces lactis and Yarrowia lipolytica and other pathogenic Candida species we examined, the major fungal pathogen of humans, Candida albicans, activates an oxidative stress response following exposure to physiological glucose levels before an oxidative stress is even encountered. Why? Using competition assays with isogenic barcoded strains, we show that "glucose-enhanced oxidative stress resistance" phenotype enhances the fitness of C. albicans during neutrophil attack and during systemic infection in mice. This anticipatory response is dependent on glucose signalling rather than glucose metabolism. Our analysis of C. albicans signalling mutants reveals that the phenotype is not dependent on the sugar receptor repressor pathway, but is modulated by the glucose repression pathway and down-regulated by the cyclic AMP-protein kinase A pathway. Changes in catalase or glutathione levels do not correlate with the phenotype, but resistance to hydrogen peroxide is dependent on glucose-enhanced trehalose accumulation. The data suggest that the evolution of this anticipatory response has involved the recruitment of conserved signalling pathways and downstream cellular responses, and that this phenotype protects C. albicans from innate immune killing, thereby promoting the fitness of C. albicans in host niches.


Candida albicans , Glucose , Humans , Animals , Mice , Glucose/metabolism , Oxidative Stress/physiology , Neutrophils , Saccharomyces cerevisiae/metabolism , Fungal Proteins/metabolism
5.
mBio ; 13(6): e0260522, 2022 12 20.
Article En | MEDLINE | ID: mdl-36218369

Candida albicans exists as a commensal of mucosal surfaces and the gastrointestinal tract without causing pathology. However, this fungus is also a common cause of mucosal and systemic infections when antifungal immune defenses become compromised. The activation of antifungal host defenses depends on the recognition of fungal pathogen-associated molecular patterns (PAMPs), such as ß-1,3-glucan. In C. albicans, most ß-1,3-glucan is present in the inner cell wall, concealed by the outer mannan layer, but some ß-1,3-glucan becomes exposed at the cell surface. In response to host signals, such as lactate, C. albicans induces the Xog1 exoglucanase, which shaves exposed ß-1,3-glucan from the cell surface, thereby reducing phagocytic recognition. We show here that ß-1,3-glucan is exposed at bud scars and punctate foci on the lateral wall of yeast cells, that this exposed ß-1,3-glucan is targeted during phagocytic attack, and that lactate-induced masking reduces ß-1,3-glucan exposure at bud scars and at punctate foci. ß-1,3-Glucan masking depends upon protein kinase A (PKA) signaling. We reveal that inactivating PKA, or its conserved downstream effectors, Sin3 and Mig1/Mig2, affects the amounts of the Xog1 and Eng1 glucanases in the C. albicans secretome and modulates ß-1,3-glucan exposure. Furthermore, perturbing PKA, Sin3, or Mig1/Mig2 attenuates the virulence of lactate-exposed C. albicans cells in Galleria. Taken together, the data are consistent with the idea that ß-1,3-glucan masking contributes to Candida pathogenicity. IMPORTANCE Microbes that coexist with humans have evolved ways of avoiding or evading our immunological defenses. These include the masking by these microbes of their "pathogen-associated molecular patterns" (PAMPs), which are recognized as "foreign" and used to activate protective immunity. The commensal fungus Candida albicans masks the proinflammatory PAMP ß-1,3-glucan, which is an essential component of its cell wall. Most of this ß-1,3-glucan is hidden beneath an outer layer of the cell wall on these microbes, but some can become exposed at the fungal cell surface. Using high-resolution confocal microscopy, we examine the nature of the exposed ß-1,3-glucan at C. albicans bud scars and at punctate foci on the lateral cell wall, and we show that these features are targeted by innate immune cells. We also reveal that downstream effectors of protein kinase A (Mig1/Mig2, Sin3) regulate the secretion of major glucanases, modulate the levels of ß-1,3-glucan exposure, and influence the virulence of C. albicans in an invertebrate model of systemic infection. Our data support the view that ß-1,3-glucan masking contributes to immune evasion and the virulence of a major fungal pathogen of humans.


Candida albicans , beta-Glucans , Antifungal Agents/pharmacology , beta-Glucans/metabolism , Cell Wall/metabolism , Cicatrix/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Glucans/metabolism , Lactates/metabolism , Pathogen-Associated Molecular Pattern Molecules
6.
Cell Surf ; 8: 100082, 2022 Dec.
Article En | MEDLINE | ID: mdl-36299405

Phagocytosis is an essential component of our immune defence against fungal pathogens. Differences in the dynamics of phagocyte migration, recognition, uptake and phagolysosome maturation are dependent on the characteristics of the fungal cargo, and in particular to differences in cell wall composition and cellular morphology. However, studies that have focused on phagocyte interactions with individual fungal species have not enabled comparisons in the kinetics of these interactions to be made between these different species. We therefore used live cell video microscopy to examine the temporal dynamics of phagocytosis for a range of fungal cargoes by thioglycollate-elicited peritoneal macrophages from C57BL/6 mice. Uniform populations of macrophages were challenged at the same time with yeast cells of Candida albicans, Candida glabrata, Saccharomyces cerevisiae and Cryptococcus neoformans (wild-type and an acapsular mutant, cap59Δ), and spores of Aspergillus fumigatus and Mucor circinelloides to enable standardized comparative interactions to be quantified from different stages of phagocytosis. Differences in the rate of uptake of fungal cells varied by up to 26-fold, whilst differences in time to induce phagosome acidification varied by as much as 29-fold. Heat-killing or opsonizing the fungal targets markedly affected the kinetics of the interaction in a species-specific manner. Fungal and macrophage killing assays further revealed cargo-specific differences in phagocytosis and diversity in fungal evasion mechanisms. Therefore, simultaneous assessment of the interaction of macrophages with different fungal pathogens highlighted major differences in the kinetics and growth responses during fungus-phagocyte interactions that are likely to impact on pathogenesis and virulence.

7.
Cell Surf ; 8: 100084, 2022 Dec.
Article En | MEDLINE | ID: mdl-36299406

The immunogenicity of Candida albicans cells is influenced by changes in the exposure of microbe-associated molecular patterns (MAMPs) on the fungal cell surface. Previously, the degree of exposure on the C. albicans cell surface of the immunoinflammatory MAMP ß-(1,3)-glucan was shown to correlate inversely with colonisation levels in the gastrointestinal (GI) tract. This is important because life-threatening systemic candidiasis in critically ill patients often arises from translocation of C. albicans strains present in the patient's GI tract. Therefore, using a murine model, we have examined the impact of gut-related factors upon ß-glucan exposure and colonisation levels in the GI tract. The degree of ß-glucan exposure was examined by imaging flow cytometry of C. albicans cells taken directly from GI compartments, and compared with colonisation levels. Fungal ß-glucan exposure was lower in the cecum than the small intestine, and fungal burdens were correspondingly higher in the cecum. This inverse correlation did not hold for the large intestine. The gut fermentation acid, lactate, triggers ß-glucan masking in vitro, leading to attenuated anti-Candida immune responses. Additional fermentation acids are present in the GI tract, including acetate, propionate, and butyrate. We show that these acids also influence ß-glucan exposure on C. albicans cells in vitro and, like lactate, they influence ß-glucan exposure via Gpr1/Gpa2-mediated signalling. Significantly, C. albicans gpr1Δ gpa2Δ cells displayed elevated ß-glucan exposure in the large intestine and a corresponding decrease in fungal burden, consistent with the idea that Gpr1/Gpa2-mediated ß-glucan masking influences colonisation of this GI compartment. Finally, extracts from the murine gut and culture supernatants from the mannan grazing gut anaerobe Bacteroides thetaiotaomicron promote ß-glucan exposure at the C. albicans cell surface. Therefore, the local microbiota influences ß-glucan exposure levels directly (via mannan grazing) and indirectly (via fermentation acids), whilst ß-glucan masking appears to promote C. albicans colonisation of the murine large intestine.

8.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article En | MEDLINE | ID: mdl-33876755

Innate immunity provides essential protection against life-threatening fungal infections. However, the outcomes of individual skirmishes between immune cells and fungal pathogens are not a foregone conclusion because some pathogens have evolved mechanisms to evade phagocytic recognition, engulfment, and killing. For example, Candida albicans can escape phagocytosis by activating cellular morphogenesis to form lengthy hyphae that are challenging to engulf. Through live imaging of C. albicans-macrophage interactions, we discovered that macrophages can counteract this by folding fungal hyphae. The folding of fungal hyphae is promoted by Dectin-1, ß2-integrin, VASP, actin-myosin polymerization, and cell motility. Folding facilitates the complete engulfment of long hyphae in some cases and it inhibits hyphal growth, presumably tipping the balance toward successful fungal clearance.


Candida albicans/pathogenicity , Hyphae/cytology , Macrophages/metabolism , Phagocytosis , AMP-Activated Protein Kinase Kinases , Actomyosin/metabolism , Animals , CD18 Antigens/metabolism , Cell Adhesion Molecules/metabolism , Cells, Cultured , Humans , Hyphae/pathogenicity , Lectins, C-Type/metabolism , Macrophages/microbiology , Mice , Protein Kinases/metabolism , RAW 264.7 Cells
9.
Nat Microbiol ; 5(12): 1516-1531, 2020 12.
Article En | MEDLINE | ID: mdl-32839538

Candida auris is among the most important emerging fungal pathogens, yet mechanistic insights into its immune recognition and control are lacking. Here, we integrate transcriptional and functional immune-cell profiling to uncover innate defence mechanisms against C. auris. C. auris induces a specific transcriptome in human mononuclear cells, a stronger cytokine response compared with Candida albicans, but a lower macrophage lysis capacity. C. auris-induced innate immune activation is mediated through the recognition of C-type lectin receptors, mainly elicited by structurally unique C. auris mannoproteins. In in vivo experimental models of disseminated candidiasis, C. auris was less virulent than C. albicans. Collectively, these results demonstrate that C. auris is a strong inducer of innate host defence, and identify possible targets for adjuvant immunotherapy.


Candida/physiology , Candidiasis/genetics , Candidiasis/microbiology , Animals , Candida/genetics , Candida/pathogenicity , Candidiasis/immunology , Cytokines/genetics , Cytokines/immunology , Humans , Immunity , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Male , Mice , Mice, Inbred C57BL , Transcription, Genetic , Virulence
10.
mBio ; 11(4)2020 07 07.
Article En | MEDLINE | ID: mdl-32636248

The cell wall provides a major physical interface between fungal pathogens and their mammalian host. This extracellular armor is critical for fungal cell homeostasis and survival. Fungus-specific cell wall moieties, such as ß-1,3-glucan, are recognized as pathogen-associated molecular patterns (PAMPs) that activate immune-mediated clearance mechanisms. We have reported that the opportunistic human fungal pathogen Candida albicans masks ß-1,3-glucan following exposure to lactate, hypoxia, or iron depletion. However, the precise mechanism(s) by which C. albicans masks ß-1,3-glucan has remained obscure. Here, we identify a secreted exoglucanase, Xog1, that is induced in response to lactate or hypoxia. Xog1 functions downstream of the lactate-induced ß-glucan "masking" pathway to promote ß-1,3-glucan "shaving." Inactivation of XOG1 blocks most but not all ß-1,3-glucan masking in response to lactate, suggesting that other activities contribute to this phenomenon. Nevertheless, XOG1 deletion attenuates the lactate-induced reductions in phagocytosis and cytokine stimulation normally observed for wild-type cells. We also demonstrate that the pharmacological inhibition of exoglucanases undermines ß-glucan shaving, enhances the immune visibility of the fungus, and attenuates its virulence. Our study establishes a new mechanism underlying environmentally induced PAMP remodeling that can be manipulated pharmacologically to influence immune recognition and infection outcomes.IMPORTANCE The immune system plays a critical role in protecting us against potentially fatal fungal infections. However, some fungal pathogens have evolved evasion strategies that reduce the efficacy of our immune defenses. Previously, we reported that the fungal pathogen Candida albicans exploits specific host-derived signals (such as lactate and hypoxia) to trigger an immune evasion strategy that involves reducing the exposure of ß-glucan at its cell surface. Here, we show that this phenomenon is mediated by the induction of a major secreted exoglucanase (Xog1) by the fungus in response to these host signals. Inactivating XOG1-mediated "shaving" of cell surface-exposed ß-glucan enhances immune responses against the fungus. Furthermore, inhibiting exoglucanase activity pharmacologically attenuates C. albicans virulence. In addition to revealing the mechanism underlying a key immune evasion strategy in a major fungal pathogen of humans, our work highlights the potential therapeutic value of drugs that block fungal immune evasion.


Candida albicans/immunology , Epitopes/immunology , Immune Evasion , Anaerobiosis , Animals , Candida albicans/drug effects , Candida albicans/enzymology , Cellulose 1,4-beta-Cellobiosidase/antagonists & inhibitors , Cellulose 1,4-beta-Cellobiosidase/metabolism , Lactic Acid/pharmacology , Larva/microbiology , Macrophages/microbiology , Male , Metabolic Networks and Pathways , Mice , Mice, Inbred C57BL , Moths/microbiology
11.
Front Genet ; 11: 375, 2020.
Article En | MEDLINE | ID: mdl-32391057

Candida albicans is a normal member of the human microbiome. It is also an opportunistic pathogen, which can cause life-threatening systemic infections in severely immunocompromized individuals. Despite the availability of antifungal drugs, mortality rates of systemic infections are high and new drugs are needed to overcome therapeutic challenges including the emergence of drug resistance. Targeting known disease pathways has been suggested as a promising avenue for the development of new antifungals. However, <30% of C. albicans genes are verified with experimental evidence of a gene product, and the full complement of genes involved in important disease processes is currently unknown. Tools to predict the function of partially or uncharacterized genes and generate testable hypotheses will, therefore, help to identify potential targets for new antifungal development. Here, we employ a network-extracted ontology to leverage publicly available transcriptomics data and identify potential candidate genes involved in disease processes. A subset of these genes has been phenotypically screened using available deletion strains and we present preliminary data that one candidate, PEP8, is involved in hyphal development and immune evasion. This work demonstrates the utility of network-extracted ontologies in predicting gene function to generate testable hypotheses that can be applied to pathogenic systems. This could represent a novel first step to identifying targets for new antifungal therapies.

12.
Curr Top Microbiol Immunol ; 425: 297-330, 2020.
Article En | MEDLINE | ID: mdl-31781866

The fungal cell wall is an essential organelle that maintains cellular morphology and protects the fungus from environmental insults. For fungal pathogens such as Candida albicans, it provides a degree of protection against attack by host immune defences. However, the cell wall also presents key epitopes that trigger host immunity and attractive targets for antifungal drugs. Rather than being a rigid shield, it has become clear that the fungal cell wall is an elastic organelle that permits rapid changes in cell volume and the transit of large liposomal particles such as extracellular vesicles. The fungal cell wall is also flexible in that it adapts to local environmental inputs, thereby enhancing the fitness of the fungus in these microenvironments. Recent evidence indicates that this cell wall adaptation affects host-fungus interactions by altering the exposure of major cell wall epitopes that are recognised by innate immune cells. Therefore, we discuss the impact of environmental adaptation upon fungal cell wall structure, and how this affects immune recognition, focussing on C. albicans and drawing parallels with other fungal pathogens.


Candida albicans/cytology , Candida albicans/immunology , Cell Wall/immunology , Candida albicans/pathogenicity , Candidiasis/immunology , Candidiasis/microbiology , Humans
13.
Nat Commun ; 10(1): 5315, 2019 11 22.
Article En | MEDLINE | ID: mdl-31757950

To colonise their host, pathogens must counter local environmental and immunological challenges. Here, we reveal that the fungal pathogen Candida albicans exploits diverse host-associated signals to promote immune evasion by masking of a major pathogen-associated molecular pattern (PAMP), ß-glucan. Certain nutrients, stresses and antifungal drugs trigger ß-glucan masking, whereas other inputs, such as nitrogen sources and quorum sensing molecules, exert limited effects on this PAMP. In particular, iron limitation triggers substantial changes in the cell wall that reduce ß-glucan exposure. This correlates with reduced phagocytosis by macrophages and attenuated cytokine responses by peripheral blood mononuclear cells. Iron limitation-induced ß-glucan masking depends on parallel signalling via the iron transceptor Ftr1 and the iron-responsive transcription factor Sef1, and the protein kinase A pathway. Our data reveal that C. albicans exploits a diverse range of specific host signals to trigger protective anticipatory responses against impending phagocytic attack and promote host colonisation.


Candida albicans/metabolism , Cytokines/immunology , Immune Evasion/physiology , Iron/metabolism , Macrophages/immunology , Phagocytosis/immunology , beta-Glucans/metabolism , Animals , Candida albicans/immunology , Cell Wall/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Fungal Proteins/metabolism , Humans , Immune Evasion/immunology , Immunity, Innate/immunology , Leukocytes, Mononuclear/immunology , Membrane Transport Proteins/metabolism , Mice , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Signal Transduction , beta-Glucans/immunology
14.
mBio ; 9(6)2018 11 06.
Article En | MEDLINE | ID: mdl-30401773

Organisms must adapt to changes in oxygen tension if they are to exploit the energetic benefits of reducing oxygen while minimizing the potentially damaging effects of oxidation. Consequently, organisms in all eukaryotic kingdoms display robust adaptation to hypoxia (low oxygen levels). This is particularly important for fungal pathogens that colonize hypoxic niches in the host. We show that adaptation to hypoxia in the major fungal pathogen of humans Candida albicans includes changes in cell wall structure and reduced exposure, at the cell surface, of ß-glucan, a key pathogen-associated molecular pattern (PAMP). This leads to reduced phagocytosis by murine bone marrow-derived macrophages and decreased production of IL-10, RANTES, and TNF-α by peripheral blood mononuclear cells, suggesting that hypoxia-induced ß-glucan masking has a significant effect upon C. albicans-host interactions. We show that hypoxia-induced ß-glucan masking is dependent upon both mitochondrial and cAMP-protein kinase A (PKA) signaling. The decrease in ß-glucan exposure is blocked by mutations that affect mitochondrial functionality (goa1Δ and upc2Δ) or that decrease production of hydrogen peroxide in the inner membrane space (sod1Δ). Furthermore, ß-glucan masking is enhanced by mutations that elevate mitochondrial reactive oxygen species (aox1Δ). The ß-glucan masking defects displayed by goa1Δ and upc2Δ cells are suppressed by exogenous dibutyryl-cAMP. Also, mutations that inactivate cAMP synthesis (cyr1Δ) or PKA (tpk1Δ tpk2Δ) block the masking phenotype. Our data suggest that C. albicans responds to hypoxic niches by inducing ß-glucan masking via a mitochondrial cAMP-PKA signaling pathway, thereby modulating local immune responses and promoting fungal colonization.IMPORTANCE Animal, plant, and fungal cells occupy environments that impose changes in oxygen tension. Consequently, many species have evolved mechanisms that permit robust adaptation to these changes. The fungal pathogen Candida albicans can colonize hypoxic (low oxygen) niches in its human host, such as the lower gastrointestinal tract and inflamed tissues, but to colonize its host, the fungus must also evade local immune defenses. We reveal, for the first time, a defined link between hypoxic adaptation and immune evasion in C. albicans As this pathogen adapts to hypoxia, it undergoes changes in cell wall structure that include masking of ß-glucan at its cell surface, and it becomes better able to evade phagocytosis by innate immune cells. We also define the signaling mechanisms that mediate hypoxia-induced ß-glucan masking, showing that they are dependent on mitochondrial signaling and the cAMP-protein kinase pathway. Therefore, hypoxia appears to trigger immune evasion in this fungal pathogen.


Candida albicans/immunology , Cyclic AMP-Dependent Protein Kinases/metabolism , Hypoxia/immunology , Immune Evasion , Mitochondria/metabolism , beta-Glucans/metabolism , Animals , Candida albicans/pathogenicity , Cell Wall/metabolism , Chemokine CCL5/immunology , Host-Pathogen Interactions/immunology , Humans , Interleukin-10/immunology , Macrophages/microbiology , Male , Mice , Mice, Inbred C57BL , Phagocytosis , Signal Transduction/immunology
15.
J Innate Immun ; 10(2): 145-160, 2018.
Article En | MEDLINE | ID: mdl-29248928

Invasive aspergillosis mainly occurs in immunocompromised patients and is commonly caused by Aspergillus fumigatus, while A.nidulans is rarely the causative agent. However, in chronic granulomatous disease (CGD) patients, A. nidulans is a frequent cause of invasive aspergillosis and is associated with higher mortality. Immune recognition of A. nidulans was compared to A. fumigatus to offer an insight into why A. nidulans infections are prevalent in CGD. Live cell imaging with J774A.1 macrophage-like cells and LC3-GFP-mCherry bone marrow-derived macrophages (BMDMs) revealed that phagocytosis of A. nidulans was slower compared to A. fumigatus. This difference could be attributed to slower migration of J774A.1 cells and a lower percentage of migrating BMDMs. In addition, delayed phagosome acidification and LC3-associated phagocytosis was observed with A. nidulans. Cytokine and oxidative burst measurements in human peripheral blood mononuclear cells revealed a lower oxidative burst upon challenge with A. nidulans. In contrast, A. nidulans induced significantly higher concentrations of cytokines. Collectively, our data demonstrate that A. nidulans is phagocytosed and processed at a slower rate compared to A. fumigatus, resulting in reduced fungal killing and increased germination of conidia. This slower rate of A. nidulans clearance may be permissive for overgrowth within certain immune settings.


Aspergillus fumigatus/immunology , Aspergillus nidulans/immunology , Phagocytosis , Animals , Aspergillosis/immunology , Aspergillosis/microbiology , Cell Line , Cell Movement , Cytokines/metabolism , Granulomatous Disease, Chronic/immunology , Granulomatous Disease, Chronic/microbiology , Humans , Kinetics , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/microbiology , Macrophages/metabolism , Macrophages/microbiology , Mice , Phagosomes/metabolism , Phagosomes/microbiology , Reactive Oxygen Species/metabolism , Species Specificity
16.
J Fungi (Basel) ; 3(3)2017 Jun 22.
Article En | MEDLINE | ID: mdl-29371549

Candida albicans is an opportunistic fungal pathogen that infects immunocompromised patients. Infection control requires phagocytosis by innate immune cells, including macrophages. Migration towards, and subsequent recognition of, C. albicans fungal cell wall components by macrophages is critical for phagocytosis. Using live-cell imaging of phagocytosis, the macrophage cell line J774.1 showed enhanced movement in response to C. albicans cell wall mutants, particularly during the first 30 min, irrespective of the infection ratio. However, phagocyte migration was reduced up to 2-fold within a C. albicans biofilm compared to planktonic fungal cells. Biofilms formed from C. albicans glycosylation mutant cells also inhibited macrophage migration to a similar extent as wildtype Candida biofilms, suggesting that the physical structure of the biofilm, rather than polysaccharide matrix composition, may hamper phagocyte migration. These data illustrate differential macrophage migratory capacities, dependent upon the form of C. albicans encountered. Impaired migration of macrophages within a C. albicans biofilm may contribute to the recalcitrant nature of clinical infections in which biofilm formation occurs.

17.
Nat Microbiol ; 2: 16238, 2016 Dec 12.
Article En | MEDLINE | ID: mdl-27941860

As they proliferate, fungi expose antigens at their cell surface that are potent stimulators of the innate immune response, and yet the commensal fungus Candida albicans is able to colonize immuno competent individuals. We show that C. albicans may evade immune detection by presenting a moving immunological target. We report that the exposure of ß-glucan, a key pathogen-associated molecular pattern (PAMP) located at the cell surface of C. albicans and other pathogenic Candida species, is modulated in response to changes in the carbon source. Exposure to lactate induces ß-glucan masking in C. albicans via a signalling pathway that has recruited an evolutionarily conserved receptor (Gpr1) and transcriptional factor (Crz1) from other well-characterized pathways. In response to lactate, these regulators control the expression of cell-wall-related genes that contribute to ß-glucan masking. This represents the first description of active PAMP masking by a Candida species, a process that reduces the visibility of the fungus to the immune system.


Candida albicans/immunology , Candida albicans/metabolism , Immune Evasion , Lactic Acid/metabolism , Membrane Proteins/metabolism , beta-Glucans/metabolism , Glycosylation
18.
Mol Biol Cell ; 27(17): 2784-801, 2016 09 01.
Article En | MEDLINE | ID: mdl-27385340

During interactions with its mammalian host, the pathogenic yeast Candida albicans is exposed to a range of stresses such as superoxide radicals and cationic fluxes. Unexpectedly, a nonbiased screen of transcription factor deletion mutants revealed that the phosphate-responsive transcription factor Pho4 is vital for the resistance of C. albicans to these diverse stresses. RNA-Seq analysis indicated that Pho4 does not induce stress-protective genes directly. Instead, we show that loss of Pho4 affects metal cation toxicity, accumulation, and bioavailability. We demonstrate that pho4Δ cells are sensitive to metal and nonmetal cations and that Pho4-mediated polyphosphate synthesis mediates manganese resistance. Significantly, we show that Pho4 is important for mediating copper bioavailability to support the activity of the copper/zinc superoxide dismutase Sod1 and that loss of Sod1 activity contributes to the superoxide sensitivity of pho4Δ cells. Consistent with the key role of fungal stress responses in countering host phagocytic defenses, we also report that C. albicans pho4Δ cells are acutely sensitive to macrophage-mediated killing and display attenuated virulence in animal infection models. The novel connections between phosphate metabolism, metal homeostasis, and superoxide stress resistance presented in this study highlight the importance of metabolic adaptation in promoting C. albicans survival in the host.


DNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Adaptation, Physiological/physiology , Candida albicans/genetics , Candida albicans/metabolism , Copper/metabolism , Fungal Proteins/metabolism , Homeostasis , Metals , Oxidative Stress/physiology , Phosphates , Saccharomyces cerevisiae Proteins , Sequence Analysis, RNA , Stress, Physiological , Superoxide Dismutase/genetics , Superoxide Dismutase-1/metabolism , Virulence/physiology
19.
Front Microbiol ; 6: 1102, 2015.
Article En | MEDLINE | ID: mdl-26528256

Numerous human diseases can be associated with fungal infections either as potential causative agents or as a result of changed immune status due to a primary disease. Fungal infections caused by Candida species can vary from mild to severe dependent upon the site of infection, length of exposure, and past medical history. Patients with impaired immune status are at increased risk for chronic fungal infections. Recent epidemiologic studies have revealed the increasing incidence of candidiasis caused by non-albicans species such as Candida parapsilosis. Due to its increasing relevance we chose two distinct C. parapsilosis strains, to describe the cellular innate immune response toward this species. In the first section of our study we compared the interaction of CLIB 214 and GA1 cells with murine and human macrophages. Both strains are commonly used to investigate C. parapsilosis virulence properties. CLIB 214 is a rapidly pseudohyphae-forming strain and GA1 is an isolate that mainly exists in a yeast form. Our results showed, that the phagocyte response was similar in terms of overall uptake, however differences were observed in macrophage migration and engulfment of fungal cells. As C. parapsilosis releases extracellular lipases in order to promote host invasion we further investigated the role of these secreted components during the distinct stages of the phagocytic process. Using a secreted lipase deficient mutant strain and the parental strain GA1 individually and simultaneously, we confirmed that fungal secreted lipases influence the fungi's virulence by detecting altered innate cellular responses. In this study we report that two isolates of a single species can trigger markedly distinct host responses and that lipase secretion plays a role on the cellular level of host-pathogen interactions.

20.
Mol Microbiol ; 97(5): 844-65, 2015 Sep.
Article En | MEDLINE | ID: mdl-26010100

Calcineurin plays essential roles in virulence and growth of pathogenic fungi and is a target of the natural products FK506 and Cyclosporine A. In the pathogenic mucoralean fungus Mucor circinelloides, calcineurin mutation or inhibition confers a yeast-locked phenotype indicating that calcineurin governs the dimorphic transition. Genetic analysis in this study reveals that two calcineurin A catalytic subunits (out of three) are functionally diverged. Homology modeling illustrates modes of resistance resulting from amino substitutions in the interface between each calcineurin subunit and the inhibitory drugs. In addition, we show how the dimorphic transition orchestrated by calcineurin programs different outcomes during host-pathogen interactions. For example, when macrophages phagocytose Mucor yeast, subsequent phagosomal maturation occurs, indicating host cells respond appropriately to control the pathogen. On the other hand, upon phagocytosis of spores, macrophages fail to form mature phagosomes. Cytokine production from immune cells differs following exposure to yeast versus spores (which germinate into hyphae). Thus, the morphogenic transition can be targeted as an efficient treatment option against Mucor infection. In addition, genetic analysis (including gene disruption and mutational studies) further strengthens the understanding of calcineurin and provides a foundation to develop antifungal agents targeting calcineurin to deploy against Mucor and other pathogenic fungi.


Antifungal Agents/pharmacology , Calcineurin Inhibitors/pharmacology , Calcineurin/physiology , Host-Pathogen Interactions , Mucor/genetics , Mucor/physiology , Amino Acid Substitution , Amphotericin B/pharmacology , Animals , Calcineurin/chemistry , Calcineurin/genetics , Cell Line , Cytokines/immunology , Drug Synergism , Echinocandins/pharmacology , Gene Deletion , Hyphae/genetics , Hyphae/ultrastructure , Larva , Lipopeptides/pharmacology , Macrophages/immunology , Macrophages/microbiology , Micafungin , Mice , Models, Molecular , Moths/microbiology , Mucor/cytology , Mucor/drug effects , Mutation , Phagosomes/metabolism , Phagosomes/microbiology , Spores, Fungal/pathogenicity , Tacrolimus/pharmacology , Virulence/genetics
...