Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(17): 21057-21065, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37079896

RESUMEN

Photoelectrochemical (PEC) water splitting for hydrogen production using the CdTe photocathode has attracted much interest due to its excellent sunlight absorption property and energy band structure. This work presents a study of engineered interfacial energetics of CdTe photocathodes by deposition of CdS, TiO2, and Ni layers. A heterostructure CdTe/CdS/TiO2/Ni photocathode was fabricated by depositing a 100-nm n-type CdS layer on a p-type CdTe surface, with 50 nm TiO2 as a protective layer and a 10 nm Ni layer as a co-catalyst. The CdTe/CdS/TiO2/Ni photocathode exhibits a high photocurrent density (Jph) of 8.16 mA/cm2 at 0 V versus reversible hydrogen electrode (VRHE) and a positive-shifted onset potential (Eonset) of 0.70 VRHE for PEC hydrogen evolution under 100 mW/cm2 AM1.5G illumination. We further demonstrate that the CdTe/CdS p-n junction promotes the separation of photogenerated carriers, the TiO2 layer protects the electrode from corrosion, and the Ni catalyst improves the charge transfer across the electrode/electrolyte interface. This work provides new insights for designing noble metal-free photocathodes toward solar hydrogen development.

2.
ACS Appl Mater Interfaces ; 12(34): 38070-38075, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32804480

RESUMEN

The use of CdSe layers has recently emerged as a route to improving CdTe photovoltaics through the formation of a CdTe(1-x)Sex (CST) phase. However, the extent of the Se diffusion and the influence it has on the CdTe grain structure has not been widely investigated. In this study, we used transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD) to investigate the impact of growing CdTe layers on three different window layer structures CdS, CdSe, and CdS/CdSe. We demonstrate that extensive intermixing occurs between CdS, CdSe, and CdTe layers resulting in large voids forming at the front interface, which will degrade device performance. The use of CdS/CdSe bilayer structures leads to the formation of a parasitic CdS(1-x)Sex phase. Following removal of CdS from the cell structure, effective CdTe and CdSe intermixing was achieved. However, the use of sputtered CdSe had limited success in producing Se grading in CST.

3.
Nanomaterials (Basel) ; 8(5)2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29693560

RESUMEN

CdTe wires have been fabricated via a catalyst free method using the industrially scalable physical vapor deposition technique close space sublimation. Wire growth was shown to be highly dependent on surface roughness and deposition pressure, with only low roughness surfaces being capable of producing wires. Growth of wires is highly (111) oriented and is inferred to occur via a vapor-solid-solid growth mechanism, wherein a CdTe seed particle acts to template the growth. Such seed particles are visible as wire caps and have been characterized via energy dispersive X-ray analysis to establish they are single phase CdTe, hence validating the self-catalysation route. Cathodoluminescence analysis demonstrates that CdTe wires exhibited a much lower level of recombination when compared to a planar CdTe film, which is highly beneficial for semiconductor applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA