Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 54
1.
Biomedicines ; 12(2)2024 Jan 30.
Article En | MEDLINE | ID: mdl-38397918

Integrins are heterodimeric cell-surface receptors that regulate cell-cell adhesion and cellular functions through bidirectional signaling. On the other hand, anomalous trafficking of integrins is also implicated in severe pathologies as cancer, thrombosis, inflammation, allergies, and multiple sclerosis. For this reason, they are attractive candidates as drug targets. However, despite promising preclinical data, several anti-integrin drugs failed in late-stage clinical trials for chronic indications, with paradoxical side effects. One possible reason is that, at low concentration, ligands proposed as antagonists may also act as partial agonists. Hence, the comprehension of the specific structural features for ligands' agonism or antagonism is currently of the utmost interest. For α4ß1 integrin, the situation is particularly obscure because neither the crystallographic nor the cryo-EM structures are known. In addition, very few potent and selective agonists are available for investigating the mechanism at the basis of the receptor activation. In this account, we discuss the physiological role of α4ß1 integrin and the related pathologies, and review the few agonists. Finally, we speculate on plausible models to explain agonism vs. antagonism by comparison with RGD-binding integrins and by analysis of computational simulations performed with homology or hybrid receptor structures.

2.
J Chem Inf Model ; 63(20): 6302-6315, 2023 10 23.
Article En | MEDLINE | ID: mdl-37788340

Receptor-selective peptides are widely used as smart carriers for specific tumor-targeted delivery. A remarkable example is the cyclic nonapeptide iRGD (CRGDKPGDC, 1) that couples intrinsic cytotoxic effects with striking tumor-homing properties. These peculiar features are based on a rather complex multistep mechanism of action, where the primary event is the recognition of RGD integrins. Despite the high number of preclinical studies and the recent success of a phase I trial for the treatment of pancreatic ductal adenocarcinoma (PDAC), there is little information available about the iRGD three-dimensional (3D) structure and integrin binding properties. Here, we re-evaluate the peptide's affinity for cancer-related integrins including not only the previously known targets αvß3 and αvß5 but also the αvß6 isoform, which is known to drive cell growth, migration, and invasion in many malignancies including PDAC. Furthermore, we use parallel tempering in the well-tempered ensemble (PT-WTE) metadynamics simulations to characterize the in-solution conformation of iRGD and extensive molecular dynamics calculations to fully investigate its binding mechanism to integrin partners. Finally, we provide clues for fine-tuning the peptide's potency and selectivity profile, which, in turn, may further improve its tumor-homing properties.


Integrins , Oligopeptides , Cell Line, Tumor , Oligopeptides/chemistry , Peptides/chemistry , Pancreatic Neoplasms
3.
Int J Mol Sci ; 24(11)2023 May 31.
Article En | MEDLINE | ID: mdl-37298541

Integrin receptors mediate cell-cell interactions via the recognition of cell-adhesion glycoproteins, as well as via the interactions of cells with proteins of the extracellular matrix, and upon activation they transduce signals bi-directionally across the cell membrane. In the case of injury, infection, or inflammation, integrins of ß2 and α4 families participate in the recruitment of leukocytes, a multi-step process initiated by the capturing of rolling leukocytes and terminated by their extravasation. In particular, α4ß1 integrin is deeply involved in leukocyte firm adhesion preceding extravasation. Besides its well-known role in inflammatory diseases, α4ß1 integrin is also involved in cancer, being expressed in various tumors and showing an important role in cancer formation and spreading. Hence, targeting this integrin represents an opportunity for the treatment of inflammatory disorders, some autoimmune diseases, and cancer. In this context, taking inspiration from the recognition motives of α4ß1 integrin with its natural ligands FN and VCAM-1, we designed minimalist α/ß hybrid peptide ligands, with our approach being associated with a retro strategy. These modifications are expected to improve the compounds' stability and bioavailability. As it turned out, some of the ligands were found to be antagonists, being able to inhibit the adhesion of integrin-expressing cells to plates coated with the natural ligands without inducing any conformational switch and any activation of intracellular signaling pathways. An original model structure of the receptor was generated using protein-protein docking to evaluate the bioactive conformations of the antagonists via molecular docking. Since the experimental structure of α4ß1 integrin is still unknown, the simulations might also shed light on the interactions between the receptor and its native protein ligands.


Neoplasms , Peptidomimetics , Humans , Integrin alpha4beta1/metabolism , Receptors, Lymphocyte Homing/metabolism , Molecular Docking Simulation , Peptidomimetics/pharmacology , Integrin beta1 , Ligands , Integrins/metabolism , Cell Adhesion , Vascular Cell Adhesion Molecule-1/metabolism
4.
J Med Chem ; 66(7): 5021-5040, 2023 04 13.
Article En | MEDLINE | ID: mdl-36976921

α4ß1 integrin is a cell adhesion receptor deeply involved in the migration and accumulation of leukocytes. Therefore, integrin antagonists that inhibit leukocytes recruitment are currently regarded as a therapeutic opportunity for the treatment of inflammatory disorder, including leukocyte-related autoimmune diseases. Recently, it has been suggested that integrin agonists capable to prevent the release of adherent leukocytes might serve as therapeutic agents as well. However, very few α4ß1 integrin agonists have been discovered so far, thus precluding the investigation of their potential therapeutic efficacy. In this perspective, we synthesized cyclopeptides containing the LDV recognition motif found in the native ligand fibronectin. This approach led to the discovery of potent agonists capable to increase the adhesion of α4 integrin-expressing cells. Conformational and quantum mechanics computations predicted distinct ligand-receptor interactions for antagonists or agonists, plausibly referable to receptor inhibition or activation.


Integrin alpha4beta1 , Integrin beta1 , Integrin alpha4beta1/metabolism , Peptides, Cyclic/pharmacology , Ligands , Integrins/metabolism , Cell Adhesion
6.
Int J Mol Sci ; 23(9)2022 May 04.
Article En | MEDLINE | ID: mdl-35563502

Chronic pain is debilitating and represents a significant burden in terms of personal and socio-economic costs. Although opioid analgesics are widely used in chronic pain treatment, many patients report inadequate pain relief or relevant adverse effects, highlighting the need to develop analgesics with improved efficacy/safety. Multiple evidence suggests that G protein-dependent signaling triggers opioid-induced antinociception, whereas arrestin-mediated pathways are credited with modulating different opioid adverse effects, thus spurring extensive research for G protein-biased opioid agonists as analgesic candidates with improved pharmacology. Despite the increasing expectations of functional selectivity, translating G protein-biased opioid agonists into improved therapeutics is far from being fully achieved, due to the complex, multidimensional pharmacology of opioid receptors. The multifaceted network of signaling events and molecular processes underlying therapeutic and adverse effects induced by opioids is more complex than the mere dichotomy between G protein and arrestin and requires more comprehensive, integrated, network-centric approaches to be fully dissected. Quantitative Systems Pharmacology (QSP) models employing multidimensional assays associated with computational tools able to analyze large datasets may provide an intriguing approach to go beyond the greater complexity of opioid receptor pharmacology and the current limitations entailing the development of biased opioid agonists as improved analgesics.


Chronic Pain , Drug-Related Side Effects and Adverse Reactions , Analgesics , Analgesics, Opioid/metabolism , Arrestin/metabolism , Chronic Pain/drug therapy , Drug-Related Side Effects and Adverse Reactions/drug therapy , GTP-Binding Proteins/metabolism , Gonadal Steroid Hormones , Humans , Network Pharmacology , Receptors, Opioid/metabolism , Receptors, Opioid, mu/metabolism
7.
Biomedicines ; 9(11)2021 Nov 21.
Article En | MEDLINE | ID: mdl-34829965

Arg-Gly-Asp (RGD)-binding integrins, e.g., αvß3, αvß1, αvß5 integrins, are currently regarded as privileged targets for the delivery of diagnostic and theranostic agents, especially in cancer treatment. In contrast, scarce attention has been paid so far to the diagnostic opportunities promised by integrins that recognize other peptide motifs. In particular, α4ß1 integrin is involved in inflammatory, allergic, and autoimmune diseases, therefore, it represents an interesting therapeutic target. Aiming at obtaining simple, highly stable ligands of α4ß1 integrin, we designed hybrid α/ß peptidomimetics carrying linkable side chains for the expedient functionalization of biomaterials, nano- and microparticles. We identified the prototypic ligands MPUPA-(R)-isoAsp(NHPr)-Gly-OH (12) and MPUPA-Dap(Ac)-Gly-OH (13) (MPUPA, methylphenylureaphenylacetic acid; Dap, 2,3-diamino propionic acid). Modification of 12 and 13 by introduction of flexible linkers at isoAsp or Dap gave 49 and 50, respectively, which allowed for coating with monolayers (ML) of flat zeolite crystals. The resulting peptide-zeolite MLs were able to capture selectively α4ß1 integrin-expressing cells. In perspective, the α4ß1 integrin ligands identified in this study can find applications for preparing biofunctionalized surfaces and diagnostic devices to control the progression of α4ß1 integrin-correlated diseases.

8.
ACS Pharmacol Transl Sci ; 4(5): 1528-1542, 2021 Oct 08.
Article En | MEDLINE | ID: mdl-34661072

Drug conjugates consisting of an antineoplastic drug and a targeting receptor ligand could be effective to overcome the heavy side effects of unselective anticancer agents. To address this need, we report here the results of a project aimed to study agonist and antagonist integrin ligands as targeting head of molecular cargoes for the selective delivery of 5-fluorouracil (5-FU) to cancer or noncancer cells. Initially, two fluorescent ß-lactam-based integrin ligands were synthesized and tested for an effective and selective internalization mediated by α4ß1 or α5ß1 integrins in Jurkat and K562 cells, respectively. No cellular uptake was observed for both fluorescent compounds in HEK293 noncancerous control cells. Afterward, three conjugates composed of the ß-lactam-based integrin ligand, suitable linkers, and 5-FU were realized. The best compound E, acting as α5ß1 integrin agonist, is able to selectively deliver 5-FU into tumor cells, successfully leading to cancer cell death.

9.
Molecules ; 26(19)2021 Oct 07.
Article En | MEDLINE | ID: mdl-34641610

Integrin α4ß1 belongs to the leukocyte integrin family and represents a therapeutic target of relevant interest given its primary role in mediating inflammation, autoimmune pathologies and cancer-related diseases. The focus of the present work is the design, synthesis and characterization of new peptidomimetic compounds that are potentially able to recognize α4ß1 integrin and interfere with its function. To this aim, a collection of seven new cyclic peptidomimetics possessing both a 4-aminoproline (Amp) core scaffold grafted onto key α4ß1-recognizing sequences and the (2-methylphenyl)ureido-phenylacetyl (MPUPA) appendage, was designed, with the support of molecular modeling studies. The new compounds were synthesized through SPPS procedures followed by in-solution cyclization maneuvers. The biological evaluation of the new cyclic ligands in cell adhesion assays on Jurkat cells revealed promising submicromolar agonist activity in one compound, namely, the c[Amp(MPUPA)Val-Asp-Leu] cyclopeptide. Further investigations will be necessary to complete the characterization of this class of compounds.


Cell Adhesion/drug effects , Integrin alpha4beta1/chemistry , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Proline/analogs & derivatives , Humans , Integrin alpha4beta1/antagonists & inhibitors , Jurkat Cells , Ligands , Models, Molecular , Oligopeptides/chemistry , Oligopeptides/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Proline/chemistry , Proline/pharmacology , Protein Binding , Protein Conformation
10.
J Exp Pharmacol ; 13: 345-358, 2021.
Article En | MEDLINE | ID: mdl-33790661

Dry eye disease (DED) is a complex multifactorial disease showing heterogenous symptoms, including dryness, photophobia, ocular discomfort, irritation and burning but also pain. These symptoms can affect visual function leading to restrictions in daily life activities and reduction in work productivity with a consequently high impact on quality of life. Several pathological mechanisms contribute to the disease: evaporative water loss leads to impairment and loss of tear homeostasis inducing either directly or indirectly to inflammation, in a self-perpetuating vicious cycle. Dysregulated ocular immune responses result in ocular surface damage, which further contributes to DED pathogenesis. Currently, DED treatment is based on a flexible stepwise approach to identify the most beneficial intervention. Although most of the available treatments may control to a certain extent some signs and symptoms of DED, they show significant limitations and do not completely address the needs of patients suffering from DED. This review provides an overview of the emerging experimental therapies for DED. Several promising therapeutic strategies are under development with the aim of dampening inflammation and restoring the homeostasis of the ocular surface microenvironment. Results from early phase clinical trials, testing the effects of EnaC blockers, TRPM8 agonist or mesenchymal stem cells in DED patients, are especially awaited to demonstrate their therapeutic value for the treatment of DED. Moreover, the most advanced experimental strategies in the pipeline for DED, tivanisiran, IL-1R antagonist EBI-005 and SkQ1, are being tested in Phase III clinical trials, still ongoing. Nevertheless, although promising results, further studies are still needed to confirm efficacy and safety of the new emerging therapies for DED.

11.
Methods Mol Biol ; 2201: 35-43, 2021.
Article En | MEDLINE | ID: mdl-32975787

Bioluminescence resonance energy transfer (BRET ) is a natural phenomenon that has been successfully applied for the study of protein-protein interactions, including opioid receptor oligomers. The discovery of opioid receptor homomers and heteromers has brought to the discovery of new functions and new way of signaling and trafficking; therefore, opioid receptor oligomers may be considered as novel drug targets. Fusing receptors of interest with Renilla luciferase and with a fluorescent protein (such as EYFP ) it is possible to study opioid receptor dimerization using BRET .


Bioluminescence Resonance Energy Transfer Techniques/methods , Receptors, Opioid, mu/metabolism , Animals , Carrier Proteins/metabolism , Cell Line , Cell Membrane/metabolism , Energy Transfer , Fluorescence , Fluorescence Resonance Energy Transfer/methods , Humans , Luciferases, Renilla/metabolism , Luminescent Measurements , Signal Transduction/drug effects
12.
Methods Mol Biol ; 2201: 163-169, 2021.
Article En | MEDLINE | ID: mdl-32975797

Opioids play a pivotal role in pain transmission but are also able to modulate immune cell functions. In the last decades a connection between opioids and integrins-adhesion molecules involved, among many other processes, in leukocyte recruitment at inflamed site-has been established. To study immune cell integrin-mediated adhesion, cell adhesion assay is a simple, reproducible, and valuable tool capable of unraveling concentration-dependent effects of a test candidate on integrin-mediated cell adhesion.


Cell Adhesion Molecules/metabolism , Cell Adhesion/drug effects , Immunohistochemistry/methods , Analgesics, Opioid/metabolism , Analgesics, Opioid/pharmacology , Animals , Cell Adhesion/physiology , Cell Adhesion Molecules/drug effects , Humans , Immunologic Factors/pharmacology , Inflammation/metabolism , Integrins/drug effects , Integrins/metabolism , Jurkat Cells , Leukocytes/metabolism , U937 Cells
13.
ACS Med Chem Lett ; 11(12): 2406-2413, 2020 Dec 10.
Article En | MEDLINE | ID: mdl-33329762

Multiple sclerosis (MS) is a complex inflammatory, degenerative, and demyelinating disease of the central nervous system. Although treatments exist, MS cannot be cured by available drugs, which primarily target neuroinflammation. Thus, it is feasible that a well concerted polypharmacological approach able to act at multiple points within the intricate network of inflammation, neurodegeneration, and demyelination/remyelination pathways would succeed where other drugs have failed. Starting from reported beneficial effects of α-linolenic acid (ALA) and valproic acid (VPA) in MS, and by applying a rational strategy, we developed a small set of codrugs obtained by conjugating VPA and ALA through proper linkers. A cellular profiling identified 1 as a polypharmacological tool able not only to modulate microglia polarization, but also to counteract neurodegeneration and demyelination and induce oligodendrocyte precursor cell differentiation, by acting on multiple biochemical and epigenetic pathways.

14.
PLoS One ; 15(8): e0237746, 2020.
Article En | MEDLINE | ID: mdl-32810144

In recent years, several studies suggested that the ability of hyperbaric oxygen therapy (HBOT) to promote healing in patients with diabetic ulcers and chronic wounds is due to the reduction of inflammatory cytokines and to a significant decrease in neutrophils recruitment to the damaged area. α4 and ß2 integrins are receptors mediating the neutrophil adhesion to the endothelium and the comprehension of the effects of hyperbaric oxygenation on their expression and functions in neutrophils could be of great importance for the design of novel therapeutic protocols focused on anti-inflammatory agents. In this study, the α4 and ß2 integrins' expression and functions have been evaluated in human primary neutrophils obtained from patients with chronic non-healing wounds and undergoing a prolonged HBOT (150 kPa per 90 minutes). The effect of a peptidomimetic α4ß1 integrin antagonist has been also analyzed under these conditions. A statistically significant decrease (68%) in ß2 integrin expression on neutrophils was observed during the treatment with HBO and maintained one month after the last treatment, while α4 integrin levels remained unchanged. However, cell adhesion function of both neutrophilic integrins α4ß1 and ß2 was significantly reduced 70 and 67%, respectively), but α4ß1 integrin was still sensitive to antagonist inhibition in the presence of fibronectin, suggesting that a combined therapy between HBOT and integrin antagonists could have greater antinflammatory efficacy.


Hyperbaric Oxygenation , Integrin alpha4beta1/antagonists & inhibitors , Neutrophils/immunology , Peptidomimetics/therapeutic use , Skin Ulcer/therapy , Aged , Aged, 80 and over , CD18 Antigens/analysis , CD18 Antigens/metabolism , Cell Adhesion/immunology , Chronic Disease/therapy , Combined Modality Therapy/methods , Female , Follow-Up Studies , Humans , Integrin alpha4beta1/analysis , Integrin alpha4beta1/metabolism , Male , Middle Aged , Neutrophil Infiltration , Neutrophils/metabolism , Peptidomimetics/pharmacology , Primary Cell Culture , Skin Ulcer/blood , Skin Ulcer/immunology , Skin Ulcer/pathology , Treatment Outcome , Wound Healing/drug effects , Wound Healing/immunology
15.
Sci Rep ; 10(1): 7410, 2020 05 04.
Article En | MEDLINE | ID: mdl-32366988

Construction of small molecule ligand (SML) based delivery systems has been performed starting from a polyfunctionalized isoxazoline scaffold, whose αvß3 and α5ß1 integrins' potency has been already established. The synthesis of this novel class of ligands was obtained by conjugation of linkers to the heterocyclic core via Huisgen-click reaction, with the aim to use them as "shuttles" for selective delivery of diagnostic agents to cancer cells, exploring the effects of the side chains in the interaction with the target. Compounds 17b and 24 showed excellent potency towards α5ß1 integrin acting as selective antagonist and agonist respectively. Further investigations confirmed their effects on target receptor through the analysis of fibronectin-induced ERK1/2 phosphorylation. In addition, confocal microscopy analysis allowed us to follow the fate of EGFP conjugated α5ß1 integrin and 17b FITC-conjugated (compound 31) inside the cells. Moreover, the stability in water solution at different values of pH and in bovine serum confirmed the possible exploitation of these peptidomimetic molecules for pharmaceutical application.


Integrin alpha5beta1/chemistry , Integrin alphaVbeta3/chemistry , Isoxazoles/chemistry , Oligopeptides/chemistry , Peptidomimetics , Animals , Cattle , Cell Adhesion , Fibronectins/chemistry , Green Fluorescent Proteins/chemistry , Humans , Hydrogen-Ion Concentration , K562 Cells , Ligands , MAP Kinase Signaling System , Magnetic Resonance Spectroscopy , Molecular Docking Simulation
16.
Int J Mol Sci ; 21(9)2020 May 11.
Article En | MEDLINE | ID: mdl-32403292

Several chronic neuroinflammatory diseases, including Parkinson's disease (PD), have the so-called 'redox imbalance' in common, a dynamic system modulated by various factors. Among them, alteration of the mitochondrial functionality can cause overproduction of reactive oxygen species (ROS) with the consequent induction of oxidative DNA damage and apoptosis. Considering the failure of clinical trials with drugs that eliminate ROS directly, research currently focuses on approaches that counteract redox imbalance, thus restoring normal physiology in a neuroinflammatory condition. Herein, we used SH-SY5Y cells treated with 6-hydroxydopamine (6-OHDA), a neurotoxin broadly employed to generate experimental models of PD. Cells were pre-treated with the Rho-modulating Escherichia coli cytotoxic necrotizing factor 1 (CNF1), before the addition of 6-OHDA. Then, cell viability, mitochondrial morphology and dynamics, redox profile as well as autophagic markers expression were assessed. We found that CNF1 preserves cell viability and counteracts oxidative stress induced by 6-OHDA. These effects are accompanied by modulation of the mitochondrial network and an increase in macroautophagic markers. Our results confirm the Rho GTPases as suitable pharmacological targets to counteract neuroinflammatory diseases and evidence the potentiality of CNF1, whose beneficial effects on pathological animal models have been already proven to act against oxidative stress through an autophagic strategy.


Antioxidants/pharmacology , Autophagy/drug effects , Bacterial Toxins/pharmacology , Escherichia coli Proteins/pharmacology , Oxidative Stress/drug effects , Oxidopamine/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neuroprotective Agents/pharmacology , Reactive Oxygen Species/metabolism
17.
Front Pharmacol ; 11: 188, 2020.
Article En | MEDLINE | ID: mdl-32210803

Kappa opioid receptor (KOPr) agonists represent alternative analgesics for their low abuse potential, although relevant adverse effects have limited their clinical use. Functionally selective KOPr agonists may activate, in a pathway-specific manner, G protein-mediated signaling, that produces antinociception, over ß-arrestin 2-dependent induction of p38MAPK, which preferentially contributes to adverse effects. Thus, functionally selective KOPr agonists biased toward G protein-coupled intracellular signaling over ß-arrestin-2-mediated pathways may be considered candidate therapeutics possibly devoid of many of the typical adverse effects elicited by classic KOPr agonists. Nonetheless, the potential utility of functionally selective agonists at opioid receptors is still highly debated; therefore, further studies are necessary to fully understand whether it will be possible to develop more effective and safer analgesics by exploiting functional selectivity at KOPr. In the present study we investigated in vitro functional selectivity and in vivo antinociceptive effects of LOR17, a novel KOPr selective peptidic agonist that we synthesized. LOR17-mediated effects on adenylyl cyclase inhibition, ERK1/2, p38MAPK phosphorylation, and astrocyte cell proliferation were studied in HEK-293 cells expressing hKOPr, U87-MG glioblastoma cells, and primary human astrocytes; biased agonism was investigated via cAMP ELISA and ß-arrestin 2 recruitment assays. Antinociception and antihypersensitivity were assessed in mice via warm-water tail-withdrawal test, intraperitoneal acid-induced writhing, and a model of oxaliplatin-induced neuropathic cold hypersensitivity. Effects of LOR17 on locomotor activity, exploratory activity, and forced-swim behavior were also assayed. We found that LOR17 is a selective, G protein biased KOPr agonist that inhibits adenylyl cyclase and activates early-phase ERK1/2 phosphorylation. Conversely to classic KOPr agonists as U50,488, LOR17 neither induces p38MAPK phosphorylation nor increases KOPr-dependent, p38MAPK-mediated cell proliferation in astrocytes. Moreover, LOR17 counteracts, in a concentration-dependent manner, U50,488-induced p38MAPK phosphorylation and astrocyte cell proliferation. Both U50,488 and LOR17 display potent antinociception in models of acute nociception, whereas LOR17 counteracts oxaliplatin-induced thermal hypersensitivity better than U50,488, and it is effective after single or repeated s.c. administration. LOR17 administered at a dose that fully alleviated oxaliplatin-induced thermal hypersensitivity did not alter motor coordination, locomotor and exploratory activities nor induced pro-depressant-like behavior. LOR17, therefore, may emerge as a novel KOPr agonist displaying functional selectivity toward G protein signaling and eliciting antinociceptive/antihypersensitivity effects in different animal models, including oxaliplatin-induced neuropathy.

18.
Front Pharmacol ; 11: 617836, 2020.
Article En | MEDLINE | ID: mdl-33584300

Age-related macular degeneration (AMD) is a complex multifactorial degenerative disease that leads to irreversible blindness. AMD affects the macula, the central part of the retina responsible for sharp central vision. Retinal pigment epithelium (RPE) is the main cellular type affected in dry AMD. RPE cells form a monolayer between the choroid and the neuroretina and are in close functional relationship with photoreceptors; moreover, RPE cells are part of the blood retina barrier that is disrupted in ocular diseases such as AMD. During ocular inflammation lymphocytes and macrophages are recruited, contact RPE and produce pro-inflammatory cytokines, which play an important role in AMD pathogenesis. The interaction between RPE and immune cells is mediated by leukocyte integrins, heterodimeric transmembrane receptors, and adhesion molecules, including VCAM-1 and ICAM-1. Within this frame, this study aimed to characterize RPE-leukocytes interaction and to investigate any potentially beneficial effects induced by integrin antagonists (DS-70, MN27 and SR714), developed in previous studies. ARPE-19 cells were co-cultured for different incubation times with Jurkat cells and apoptosis and necrosis levels were analyzed by flow cytometry. Moreover, we measured the mRNA levels of the pro-inflammatory cytokine IL-1ß and the expression of adhesion molecules VCAM-1 and ICAM-1. We found that RPE-lymphocyte interaction increased apoptosis and necrosis levels in RPE cells and the expression of IL-1ß. This interaction was mediated by the binding of α4ß1 and αLß2 integrins to VCAM-1 and ICAM-1, respectively. The blockade of RPE-lymphocyte interaction with blocking antibodies highlighted the pivotal role played by integrins. Therefore, α4ß1 and αLß2 integrin antagonists were employed to disrupt RPE-lymphocyte crosstalk. Small molecule integrin antagonists proved to be effective in reducing RPE cell death and expression of IL-1ß, demonstrating that integrin antagonists could protect RPE cells from detrimental effects induced by the interaction with immune cells recruited to the retina. Overall, the leukocyte integrin antagonists employed in the present study may represent a novel opportunity to develop new drugs to fight dry AMD.

19.
J Med Chem ; 62(22): 10156-10166, 2019 11 27.
Article En | MEDLINE | ID: mdl-31670514

By dissecting the structure of ß-lactam-based ligands, a new series of compounds was designed, synthesized, and evaluated toward integrins αvß3, α5ß1, and α4ß1. New selective ligands with antagonist or agonist activities of cell adhesion in the nanomolar range were obtained. The best agonist molecules induced significant adhesion of SK-MEL-24 cells and Saos-2 cells as a valuable model for osteoblast adhesion. These data could lead to the development of new agents to improve cellular osseointegration and bone regeneration. Molecular modeling studies on prototypic compounds and αvß3 or α5ß1 integrin supported the notion that ligand carboxylate fixing to the metal ion-dependent adhesion site in the ß-subunit can be sufficient for binding the receptors, while the aryl side chains play a role in determining the selectivity as well as agonism versus antagonism.


Integrins/agonists , Integrins/antagonists & inhibitors , beta-Lactams/chemistry , beta-Lactams/pharmacology , Cell Adhesion/drug effects , Cell Line , Humans , Integrin alpha4beta1/agonists , Integrin alpha4beta1/antagonists & inhibitors , Integrin alpha4beta1/metabolism , Integrin alpha5beta1/agonists , Integrin alpha5beta1/antagonists & inhibitors , Integrin alpha5beta1/metabolism , Integrin alphaVbeta3/agonists , Integrin alphaVbeta3/antagonists & inhibitors , Integrin alphaVbeta3/metabolism , Integrins/metabolism , Ligands , MAP Kinase Signaling System/drug effects , Models, Molecular , Molecular Docking Simulation , Osteoblasts/drug effects , Structure-Activity Relationship , beta-Lactams/chemical synthesis
20.
Front Chem ; 7: 489, 2019.
Article En | MEDLINE | ID: mdl-31338363

Among the other members of the adhesion molecules' family, α4ß1 integrin, a heterodimeric receptor, plays a crucial role in inflammatory diseases, cancer development, metastasis and stem cell mobilization or retention. In many cases, its function in pathogenesis is not yet completely understood and investigations on ligand binding and related stabilization of active/inactive conformations still represent an important goal. For this reason, starting from the highlight of α4ß1 functions in human pathologies, we report an overview of synthetic α4ß1 integrin ligands under development as potential therapeutic agents. The small molecule library that we have selected represents a collection of lead compounds. These molecules are the object of future refinement in academic and industrial research, in order to achieve a fine tuning of α4ß1 integrin regulation for the development of novel agents against pathologies still eluding an effective solution.

...