Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 19333, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369435

RESUMEN

Lysophosphatidylcholine (LPC) was previously found to show neuroprotective effect on nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) induced signalings. Also, numerous studies reported the emerging roles of long noncoding RNAs (LncRNAs) involved in neurodegenerative disease. However, the biological mechanism of LPC and expression profile of lncRNAs has not been reported. Here, lncRNAs in PC12 cells under LPC and NGF treatment were analyzed using high throughput sequencing technology for the first time. We identified 564 annotated and 1077 novel lncRNAs in PC12 cells. Among them, 121 lncRNAs were differentially expressed in the PC12 cells under LPC stimulation. KEGG analysis showed that differentially expressed mRNAs co-expressed with lncRNAs mainly enriched in ribosome, oxidative phosphorylation, Parkinson's disease, Huntington's disease and Alzheimer's disease etc. LncRNA-mRNA network analysis showed that lncRNA ENSRNOT00000082515 had interactions with 626 different mRNAs suggesting that lncRNA ENSRNOT00000082515 probably play vital role. Finally, sequencing data were validated by qRT-PCR for ENSRNOT00000084874, ENSRNOT00000082515, LNC_001033 forward Fgf18, Vcam1, and Pck2.


Asunto(s)
Enfermedades Neurodegenerativas , ARN Largo no Codificante , Ratas , Animales , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Lisofosfatidilcolinas/farmacología , Factor de Crecimiento Nervioso/genética , Perfilación de la Expresión Génica , Células PC12 , Redes Reguladoras de Genes
2.
Mol Gen Microbiol Virol ; 37(3): 159-166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589521

RESUMEN

The 2019 novel coronavirus disease (COVID-19) is the disease that has been identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the prophylactic treatment of SARS-CoV-2 is still under investigation. The effective delivery of eukaryotic expression plasmids to the immune system's inductive cells constitutes an essential requirement for generating effective DNA vaccines. Here, we have explored the use of Salmonella typhimurium as vehicles to deliver expression plasmids orally. The attenuated Salmonella phoP was constructed by the one-step gene inactivation method, and plasmid-encoded the spike protein of SARS-CoV-2 was transform into the Salmonella phoP by electroporation. Western blot experiment was used for the detection of SARS-CoV-2 expression on 293T cells. Wistar rats were immunized orally with Salmonella that carried a eukaryotic expression plasmid once a week for three consecutive weeks. The ELISA was performed to measure the SARS-CoV-2 specific IgG at rat's serum samples. pSARS-CoV-2 can be successfully expression on 293T cells, and all immunized animals generated immunity against the SARS-CoV-2 spike protein, indicating that a Salmonella-based vaccine carrying the Spike gene can elicit SARS-CoV-2-specific secondary immune responses in rats. Oral delivery of SARS-CoV-2 DNA vaccines using attenuated Salmonella typhimurium may help develop a protective vaccine against SARS-CoV-2 infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA