Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Heart Assoc ; 13(18): e032086, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39234806

RESUMEN

BACKGROUND: Many disease processes are influenced by circadian clocks and display ~24-hour rhythms. Whether disruptions to these rhythms increase stroke risk is unclear. We evaluated the association between 24-hour rest-activity rhythms, stroke risk, and major poststroke adverse outcomes. METHODS AND RESULTS: We examined ~100 000 participants from the UK Biobank (aged 44-79 years; ~57% women) assessed with actigraphy (6-7 days) and 5-year median follow-up. We derived (1) most active 10-hour activity counts across the 24-hour cycle and the timing of its midpoint timing; (2) the least active 5-hour count and its midpoint; (3) relative amplitude; (4) interdaily stability; and (5) intradaily variability, for stability and fragmentation of the rhythm. Cox proportional hazard models were constructed for time to (1) incident stroke (n=1652) and (2) poststroke adverse outcomes (dementia, depression, disability, or death). Suppressed relative amplitude (lowest quartile [quartile 1] versus the top quartile [quartile 4]) was associated with stroke risk (hazard ratio [HR], 1.61 [95% CI, 1.35-1.92]; P<0.001) after adjusting for demographics. Later most active 10-hour activity count midpoint timing (14:00-15:26; HR, 1.26 [95% CI, 1.07-1.49]; P=0.007) also had higher stroke risk than earlier (12:17-13:10) participants. A fragmented rhythm (intradaily variability) was also associated with higher stroke risk (quartile 4 versus quartile 1; HR, 1.26 [95% CI, 1.06-1.49]; P=0.008). Suppressed relative amplitude was associated with risk for poststroke adverse outcomes (quartile 1 versus quartile 4; HR, 2.02 [95% CI, 1.46-2.48]; P<0.001). All associations were independent of age, sex, race, obesity, sleep disorders, cardiovascular diseases or risks, and other comorbidity burdens. CONCLUSIONS: Suppressed 24-hour rest-activity rhythm may be a risk factor for stroke and an early indicator of major poststroke adverse outcomes.


Asunto(s)
Actigrafía , Accidente Cerebrovascular , Humanos , Persona de Mediana Edad , Femenino , Masculino , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/etiología , Anciano , Adulto , Factores de Riesgo , Descanso/fisiología , Ritmo Circadiano/fisiología , Medición de Riesgo/métodos , Factores de Tiempo , Reino Unido/epidemiología , Incidencia
2.
BMJ Open ; 14(4): e080796, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38643014

RESUMEN

INTRODUCTION: Surgical patients over 70 experience postoperative delirium (POD) complications in up to 50% of procedures. Sleep/circadian disruption has emerged as a potential risk factor for POD in epidemiological studies. This protocol presents a single-site, prospective observational study designed to examine the relationship between sleep/circadian regulation and POD and how this association could be moderated or mediated by Alzheimer's disease (AD) pathology and genetic risk for AD. METHODS AND ANALYSIS: Study staff members will screen for eligible patients (age ≥70) seeking joint replacement or spinal surgery at Massachusetts General Hospital (MGH). At the inclusion visit, patients will be asked a series of questionnaires related to sleep and cognition, conduct a four-lead ECG recording and be fitted for an actigraphy watch to wear for 7 days before surgery. Blood samples will be collected preoperatively and postoperatively and will be used to gather information about AD variant genes (APOE-ε4) and AD-related pathology (total and phosphorylated tau). Confusion Assessment Method-Scale and Montreal Cognitive Assessment will be completed twice daily for 3 days after surgery. Seven-day actigraphy assessments and Patient-Reported Outcomes Measurement Information System questionnaires will be performed 1, 3 and 12 months after surgery. Relevant patient clinical data will be monitored and recorded throughout the study. ETHICS AND DISSEMINATION: This study is approved by the IRB at MGH, Boston, and it is registered with the US National Institutes of Health on ClinicalTrials.gov (NCT06052397). Plans for dissemination include conference presentations at a variety of scientific institutions. Results from this study are intended to be published in peer-reviewed journals. Relevant updates will be made available on ClinicalTrials.gov. TRIAL REGISTRATION NUMBER: NCT06052397.


Asunto(s)
Delirio , Delirio del Despertar , Humanos , Estudios Prospectivos , Delirio/diagnóstico , Delirio/etiología , Complicaciones Posoperatorias/diagnóstico , Estudios de Cohortes , Sueño , Biomarcadores , Estudios Observacionales como Asunto
3.
medRxiv ; 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37292791

RESUMEN

Background: Almost all biological and disease processes are influenced by circadian clocks and display ∼24-hour rhythms. Disruption of these rhythms may be an important novel risk factor for stroke. We evaluated the association between 24-h rest-activity rhythm measures, stroke risk, and major post-stroke adverse outcomes. Methods: In this cohort study, we examined ∼100,000 participants in the UK Biobank (44-79 years old; ∼57% females) who underwent an actigraphy (6-7 days) and 5-year median follow-up. We derived: (1) most active 10 hours activity counts ( M10 ) across the 24-h cycle and the timing of its midpoint ( M10 midpoint ); (2) the least active 5 hours counts ( L5 ) and its midpoint timing ( L5 midpoint ); (3) relative amplitude ( RA ) - (M10-L5)/(M10+L5); (4) interdaily stability (IS): stability and (5) intradaily variability (IV), fragmentation of the rhythm. Cox proportional hazard models were constructed for time to (i) incident stroke (n=1,652); and (ii) post-stroke adverse outcomes (dementia, depression, disability, or death). Results: Suppressed RA (lower M10 and higher L5) was associated with stroke risk after adjusting for demographics; the risk was highest in the lowest quartile [Q1] for RA (HR=1.62; 95% CI:1.36-1.93, p <0.001) compared to the top quartile [Q4]. Participants with later M10 midpoint timing (14:00-15:26, HR=1.26, CI:1.07-1.49, p =0.007) also had a higher risk for stroke than earlier (12:17-13:10) participants. A fragmented rhythm (IV) was also associated with a higher risk for stroke (Q4 vs. Q1; HR=1.27; CI:1.06-1.50, p =0.008), but differences in the stability of rhythms (IS) were not. Suppressed RA was associated with an increased risk of unfavorable post-stroke outcomes (Q1 vs. Q4; 1.78 [1.29-2.47]; p <0.001). All the associations were independent of age, sex, race, obesity, sleep disorders, cardiovascular diseases or risks, and other morbidity burdens. Conclusion: Suppressed 24-h rest-activity rhythm may be a risk factor for stroke and an early indicator of major post-stroke adverse outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA