Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Saudi J Ophthalmol ; 37(4): 313-320, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155679

RESUMEN

PURPOSE: The purpose of this study was to develop a visually guided swim assay (VGSA) for measuring vision in mouse retinal disease models comparable to the multi-luminance mobility test (MLMT) utilized in human clinical trials. METHODS: Three mouse retinal disease models were studied: Bardet-Biedl syndrome type 1 (Bbs1M390R/M390R), n = 5; Bardet-Biedl syndrome type 10 (Bbs10-/-), n = 11; and X linked retinoschisis (retinoschisin knockout; Rs1-KO), n = 5. Controls were normally-sighted mice, n = 10. Eyeless Pax6Sey-Dey mice, n = 4, were used to determine the performance of animals without vision in VGSA. RESULTS: Eyeless Pax6Sey-Dey mice had a VGSA time-to-platform (TTP) 7X longer than normally-sighted controls (P < 0.0001). Controls demonstrated no difference in their TTP in both lighting conditions; the same was true for Pax6Sey-Dey. At 4-6 M, Rs1-KO and Bbs10-/- had longer TTP in the dark than controls (P = 0.0156 and P = 1.23 × 10-8, respectively). At 9-11 M, both BBS models had longer TTP than controls in light and dark with times similar to Pax6Sey-Dey (P < 0.0001), demonstrating progressive vision loss in BBS models, but not in controls nor in Rs1-KO. At 1 M, Bbs10-/- ERG light-adapted (cone) amplitudes were nonrecordable, resulting in a floor effect. VGSA did not reach a floor until 9-11 M. ERG combined rod/cone b-wave amplitudes were nonrecordable in all three mutant groups at 9-11 M, but VGSA still showed differences in visual function. ERG values correlate non-linearly with VGSA, and VGSA measured the continual decline of vision. CONCLUSION: ERG is no longer a useful endpoint once the nonrecordable level is reached. VGSA differentiates between different levels of vision, different ages, and different disease models even after ERG is nonrecordable, similar to the MLMT in humans.

2.
Adv Exp Med Biol ; 1415: 269-276, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440044

RESUMEN

Photoreceptors (PRs) in the neural retina convert photon capture into an electrical signal that is communicated across a chemical synapse to second-order neurons in the retina and on through the rest of the visual pathway. This information is decoded in the visual cortex to create images. The activity of PRs depends on the concerted action of several voltage-gated ion channels that will be discussed in this chapter.


Asunto(s)
Células Fotorreceptoras , Retina , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Canales Iónicos/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Células Fotorreceptoras Retinianas Conos/fisiología
3.
Front Mol Neurosci ; 16: 1155955, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37181655

RESUMEN

The voltage-gated calcium channel, Cav1.4 is localized to photoreceptor ribbon synapses and functions both in molecular organization of the synapse and in regulating release of synaptic vesicles. Mutations in Cav1.4 subunits typically present as either incomplete congenital stationary night blindness or a progressive cone-rod dystrophy in humans. We developed a cone-rich mammalian model system to further study how different Cav1.4 mutations affect cones. RPE65 R91W KI; Nrl KO "Conefull" mice were crossed to Cav1.4 α1F or α2δ4 KO mice to generate the "Conefull:α1F KO" and "Conefull:α2δ4 KO" lines. Animals were assessed using a visually guided water maze, electroretinogram (ERG), optical coherence tomography (OCT), and histology. Mice of both sexes and up to six-months of age were used. Conefull: α1F KO mice could not navigate the visually guided water maze, had no b-wave in the ERG, and the developing all-cone outer nuclear layer reorganized into rosettes at the time of eye opening with degeneration progressing to 30% loss by 2-months of age. In comparison, the Conefull: α2δ4 KO mice successfully navigated the visually guided water maze, had a reduced amplitude b-wave ERG, and the development of the all-cone outer nuclear layer appeared normal although progressive degeneration with 10% loss by 2-months of age was observed. In summary, new disease models for studying congenital synaptic diseases due to loss of Cav1.4 function have been created.

4.
PLoS One ; 17(12): e0276298, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36477475

RESUMEN

OBJECTIVE: To evaluate efficacy of a novel adeno-associated virus (AAV) vector, AAV2/4-RS1, for retinal rescue in the retinoschisin knockout (Rs1-KO) mouse model of X-linked retinoschisis (XLRS). Brinzolamide (Azopt®), a carbonic anhydrase inhibitor, was tested for its ability to potentiate the effects of AAV2/4-RS1. METHODS: AAV2/4-RS1 with a cytomegalovirus (CMV) promoter (2x1012 viral genomes/mL) was delivered to Rs1-KO mice via intravitreal (N = 5; 1µL) or subretinal (N = 21; 2µL) injections at postnatal day 60-90. Eleven mice treated with subretinal therapy also received topical Azopt® twice a day. Serial full field electroretinography (ERG) was performed starting at day 50-60 post-injection. Mice were evaluated using a visually guided swim assay (VGSA) in light and dark conditions. The experimental groups were compared to untreated Rs1-KO (N = 11), wild-type (N = 12), and Rs1-KO mice receiving only Azopt® (N = 5). Immunofluorescence staining was performed to assess RS1 protein expression following treatment. RESULTS: The ERG b/a ratio was significantly higher in the subretinal plus Azopt® (p<0.0001), subretinal without Azopt® (p = 0.0002), and intravitreal (p = 0.01) treated eyes compared to untreated eyes. There was a highly significant subretinal treatment effect on ERG amplitudes collectively at 7-9 months post-injection (p = 0.0003). Cones showed more effect than rods. The subretinal group showed improved time to platform in the dark VGSA compared to untreated mice (p<0.0001). RS1 protein expression was detected in the outer retina in subretinal treated mice and in the inner retina in intravitreal treated mice. CONCLUSIONS: AAV2/4-RS1 shows promise for improving retinal phenotype in the Rs1-KO mouse model. Subretinal delivery was superior to intravitreal. Topical brinzolamide did not improve efficacy. AAV2/4-RS1 may be considered as a potential treatment for XLRS patients.


Asunto(s)
Retinosquisis , Ratones , Animales , Retinosquisis/genética , Retinosquisis/terapia , Ratones Noqueados , Terapia Genética
5.
PLoS One ; 17(6): e0268335, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35679272

RESUMEN

Hyperpolarization activated cyclic nucleotide-gated channel 1 (HCN1) is expressed throughout the nervous system and is critical for regulating neuronal excitability, with mutations being associated with multiple forms of epilepsy. Adaptive modulation of HCN1 has been observed, as has pathogenic dysregulation. While the mechanisms underlying this modulation remain incompletely understood, regulation of HCN1 has been shown to include phosphorylation. A candidate phosphorylation-dependent regulator of HCN1 channels is 14-3-3. We used bioinformatics to identify three potential 14-3-3 binding sites in HCN1. We confirmed that 14-3-3 could pull down HCN1 from multiple tissue sources and used HEK293 cells to detail the interaction. Two sites in the intrinsically disordered C-terminus of HCN1 were necessary and sufficient for a phosphorylation-dependent interaction with 14-3-3. The same region of HCN1 containing the 14-3-3 binding peptides is required for phosphorylation-independent protein degradation. We propose a model in which phosphorylation of mouse S810 and S867 (human S789 and S846) recruits 14-3-3 to inhibit a yet unidentified factor signaling for protein degradation, thus increasing the half-life of HCN1.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Canales de Potasio , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Células HEK293 , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ratones , Neuronas/metabolismo , Canales de Potasio/genética , Canales de Potasio/metabolismo
6.
J Neurosci ; 42(21): 4231-4249, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35437278

RESUMEN

Signal integration of converging neural circuits is poorly understood. One example is in the retina where the integration of rod and cone signaling is responsible for the large dynamic range of vision. The relative contribution of rods versus cones is dictated by a complex function involving background light intensity and stimulus temporal frequency. One understudied mechanism involved in coordinating rod and cone signaling onto the shared retinal circuit is the hyperpolarization activated current (Ih) mediated by hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels expressed in rods and cones. Ih opposes membrane hyperpolarization driven by activation of the phototransduction cascade and modulates the strength and kinetics of the photoreceptor voltage response. We examined conditional knock-out (KO) of HCN1 from mouse rods using electroretinography (ERG). In the absence of HCN1, rod responses are prolonged in dim light which altered the response to slow modulation of light intensity both at the level of retinal signaling and behavior. Under brighter intensities, cone-driven signaling was suppressed. To our surprise, conditional KO of HCN1 from mouse cones had no effect on cone-mediated signaling. We propose that Ih is dispensable in cones because of the high level of temporal control of cone phototransduction. Thus, HCN1 is required for cone-driven retinal signaling only indirectly by modulating the voltage response of rods to limit their output.SIGNIFICANCE STATEMENT Hyperpolarization gated hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels carry a feedback current that helps to reset light-activated photoreceptors. Using conditional HCN1 knock-out (KO) mice we show that ablating HCN1 from rods allows rods to signal in bright light when they are normally shut down. Instead of enhancing vision this results in suppressing cone signaling. Conversely, ablating HCN1 from cones was of no consequence. This work provides novel insights into the integration of rod and cone signaling in the retina and challenges our assumptions about the role of HCN1 in cones.


Asunto(s)
Nucleótidos Cíclicos , Células Fotorreceptoras Retinianas Bastones , Animales , Electrorretinografía , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Ratones , Ratones Noqueados , Canales de Potasio/genética , Retina/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología
7.
Hum Mol Genet ; 31(7): 1035-1050, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-34652420

RESUMEN

Heteromeric Kv2.1/Kv8.2 channels are voltage-gated potassium channels localized to the photoreceptor inner segment. They carry IKx, which is largely responsible for setting the photoreceptor resting membrane potential. Mutations in Kv8.2 result in childhood-onset cone dystrophy with supernormal rod response (CDSRR). We generated a Kv8.2 knockout (KO) mouse and examined retinal signaling and photoreceptor degeneration to gain deeper insight into the complex phenotypes of this disease. Using electroretinograms, we show that there were delayed or reduced signaling from rods depending on the intensity of the light stimulus, consistent with reduced capacity for light-evoked changes in membrane potential. The delayed response was not seen ex vivo where extracellular potassium levels were controlled by the perfusion buffer, so we propose the in vivo alteration is influenced by genotype-associated ionic imbalance. We observed mild retinal degeneration. Signaling from cones was reduced but there was no loss of cone density. Loss of Kv8.2 altered responses to flickering light with responses attenuated at high frequencies and altered in shape at low frequencies. The Kv8.2 KO line on an all-cone retina background had reduced cone-driven ERG b wave amplitudes and underwent degeneration. Altogether, we provide insight into how a deficit in the dark current affects the health and function of photoreceptors.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Degeneración Retiniana , Enfermedades de la Retina , Animales , Electrorretinografía , Ratones , Canales de Potasio con Entrada de Voltaje/genética , Retina/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Degeneración Retiniana/genética
8.
Front Cell Neurosci ; 14: 595523, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33250719

RESUMEN

Vision, hearing, smell, taste, and touch are the tools used to perceive and navigate the world. They enable us to obtain essential resources such as food and highly desired resources such as mates. Thanks to the investments in biomedical research the molecular unpinning's of human sensation are rivaled only by our knowledge of sensation in the laboratory mouse. Humans rely heavily on vision whereas mice use smell as their dominant sense. Both modalities have many features in common, starting with signal detection by highly specialized primary sensory neurons-rod and cone photoreceptors (PR) for vision, and olfactory sensory neurons (OSN) for the smell. In this chapter, we provide an overview of how these two types of primary sensory neurons operate while highlighting the similarities and distinctions.

9.
Elife ; 92020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32940604

RESUMEN

Synapses are fundamental information processing units that rely on voltage-gated Ca2+ (Cav) channels to trigger Ca2+-dependent neurotransmitter release. Cav channels also play Ca2+-independent roles in other biological contexts, but whether they do so in axon terminals is unknown. Here, we addressed this unknown with respect to the requirement for Cav1.4 L-type channels for the formation of rod photoreceptor synapses in the retina. Using a mouse strain expressing a non-conducting mutant form of Cav1.4, we report that the Cav1.4 protein, but not its Ca2+ conductance, is required for the molecular assembly of rod synapses; however, Cav1.4 Ca2+ signals are needed for the appropriate recruitment of postsynaptic partners. Our results support a model in which presynaptic Cav channels serve both as organizers of synaptic building blocks and as sources of Ca2+ ions in building the first synapse of the visual pathway and perhaps more broadly in the nervous system.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Terminales Presinápticos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Sinapsis/fisiología , Transmisión Sináptica , Animales , Masculino , Ratones
10.
Invest Ophthalmol Vis Sci ; 60(8): 3150-3161, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31335952

RESUMEN

Purpose: Cav1.4 is a voltage-gated calcium channel clustered at the presynaptic active zones of photoreceptors. Cav1.4 functions in communication by mediating the Ca2+ influx that triggers neurotransmitter release. It also aids in development since rod ribbon synapses do not form in Cav1.4 knock-out mice. Here we used a rescue strategy to investigate the ability of Cav1.4 to trigger synaptogenesis in both immature and mature mouse rods. Methods: In vivo electroporation was used to transiently express Cav α1F or tamoxifen-inducible Cav α1F in a subset of Cav1.4 knock-out mouse rods. Synaptogenesis was assayed using morphologic markers and a vision-guided water maze. Results: We found that introduction of Cav α1F to knock-out terminals rescued synaptic development as indicated by PSD-95 expression and elongated ribbons. When expression of Cav α1F was induced in mature animals, we again found restoration of PSD-95 and elongated ribbons. However, the induced expression of Cav α1F led to diffuse distribution of Cav α1F in the terminal instead of being clustered beneath the ribbon. Approximately a quarter of treated animals passed the water maze test, suggesting the rescue of retinal signaling in these mice. Conclusions: These data confirm that Cav α1F expression is necessary for rod synaptic terminal development and demonstrate that rescue is robust even in adult animals with late stages of synaptic disease. The degree of rod synaptic plasticity seen here should be sufficient to support future vision-restoring treatments such as gene or cell replacement that will require photoreceptor synaptic rewiring.


Asunto(s)
Canales de Calcio Tipo L/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Transmisión Sináptica/genética , Animales , Animales Recién Nacidos , Canales de Calcio Tipo L/metabolismo , Femenino , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Terminales Presinápticos/metabolismo , Sinapsis/metabolismo
11.
J Neurosci ; 38(27): 6145-6160, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29875267

RESUMEN

α2δ-4 is an auxiliary subunit of voltage-gated Cav1.4 L-type channels that regulate the development and mature exocytotic function of the photoreceptor ribbon synapse. In humans, mutations in the CACNA2D4 gene encoding α2δ-4 cause heterogeneous forms of vision impairment in humans, the underlying pathogenic mechanisms of which remain unclear. To investigate the retinal function of α2δ-4, we used genome editing to generate an α2δ-4 knock-out (α2δ-4 KO) mouse. In male and female α2δ-4 KO mice, rod spherules lack ribbons and other synaptic hallmarks early in development. Although the molecular organization of cone synapses is less affected than rod synapses, horizontal and cone bipolar processes extend abnormally in the outer nuclear layer in α2δ-4 KO retina. In reconstructions of α2δ-4 KO cone pedicles by serial block face scanning electron microscopy, ribbons appear normal, except that less than one-third show the expected triadic organization of processes at ribbon sites. The severity of the synaptic defects in α2δ-4 KO mice correlates with a progressive loss of Cav1.4 channels, first in terminals of rods and later cones. Despite the absence of b-waves in electroretinograms, visually guided behavior is evident in α2δ-4 KO mice and better under photopic than scotopic conditions. We conclude that α2δ-4 plays an essential role in maintaining the structural and functional integrity of rod and cone synapses, the disruption of which may contribute to visual impairment in humans with CACNA2D4 mutations.SIGNIFICANCE STATEMENT In the retina, visual information is first communicated by the synapse formed between photoreceptors and second-order neurons. The mechanisms that regulate the structural integrity of this synapse are poorly understood. Here we demonstrate a role for α2δ-4, a subunit of voltage-gated Ca2+ channels, in organizing the structure and function of photoreceptor synapses. We find that presynaptic Ca2+ channels are progressively lost and that rod and cone synapses are disrupted in mice that lack α2δ-4. Our results suggest that alterations in presynaptic Ca2+ signaling and photoreceptor synapse structure may contribute to vision impairment in humans with mutations in the CACNA2D4 gene encoding α2δ-4.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/ultraestructura , Sinapsis/metabolismo , Sinapsis/ultraestructura , Animales , Femenino , Humanos , Macaca fascicularis , Masculino , Ratones , Ratones Noqueados
12.
Exp Eye Res ; 170: 108-116, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29486162

RESUMEN

The 14-3-3 family of proteins has undergone considerable expansion in higher eukaryotes with humans and mice expressing seven isoforms (ß, ε, η, γ, θ, ζ, and σ) from seven distinct genes (YWHAB, YWAHE, YWHAH, YWHAG, YWHAQ, YWHAZ, and SFN). Growing evidence indicates that while highly conserved, these isoforms are not entirely functionally redundant as they exhibit unique tissue expression profiles, subcellular localization, and biochemical functions. A key limitation in our understanding of 14-3-3 biology lies in our limited knowledge of cell-type specific 14-3-3 expression. Here we provide a characterization of 14-3-3 expression in whole retina and isolated rod photoreceptors using reverse-transcriptase digital droplet PCR. We find that all 14-3-3 genes with the exception of SFN are expressed in mouse retina with YWHAQ and YWHAE being the most highly expressed. Rod photoreceptors are enriched in YWHAE (14-3-3 ε). Immunohistochemistry revealed that 14-3-3 ε and 14-3-3 ζ exhibit unique distributions in photoreceptors with 14-3-3 ε restricted to the inner segment and 14-3-3 ζ localized to the outer segment. Our data demonstrates that, in the retina, 14-3-3 isoforms likely serve specific functions as they exhibit unique expression levels and cell-type specificity. As such, future investigations into 14-3-3 function in rod photoreceptors should be centered on 14-3-3 ε and 14-3-3 ζ, depending on the subcellular region of question.


Asunto(s)
Proteínas 14-3-3/genética , Regulación de la Expresión Génica/fisiología , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Western Blotting , Femenino , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Plásmidos , Isoformas de Proteínas/genética , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Invest Ophthalmol Vis Sci ; 57(6): 2509-21, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27152965

RESUMEN

PURPOSE: We characterize calpain-5 (CAPN5) expression in retinal and neuronal subcellular compartments. METHODS: CAPN5 gene variants were classified using the exome variant server, and RNA-sequencing was used to compare expression of CAPN5 mRNA in the mouse and human retina and in retinoblastoma cells. Expression of CAPN5 protein was ascertained in humans and mice in silico, in mouse retina by immunohistochemistry, and in neuronal cancer cell lines and fractionated central nervous system tissue extracts by Western analysis with eight antibodies targeting different CAPN5 regions. RESULTS: Most CAPN5 genetic variation occurs outside its protease core; and searches of cancer and epilepsy/autism genetic databases found no variants similar to hyperactivating retinal disease alleles. The mouse retina expressed one transcript for CAPN5 plus those of nine other calpains, similar to the human retina. In Y79 retinoblastoma cells, the level of CAPN5 transcript was very low. Immunohistochemistry detected CAPN5 expression in the inner and outer nuclear layers and at synapses in the outer plexiform layer. Western analysis of fractionated retinal extracts confirmed CAPN5 synapse localization. Western blots of fractionated brain neuronal extracts revealed distinct subcellular patterns and the potential presence of autoproteolytic CAPN5 domains. CONCLUSIONS: CAPN5 is moderately expressed in the retina and, despite higher expression in other tissues, hyperactive disease mutants of CAPN5 only manifest as eye disease. At the cellular level, CAPN5 is expressed in several different functional compartments. CAPN5 localization at the photoreceptor synapse and with mitochondria explains the neural circuitry phenotype in human CAPN5 disease alleles.


Asunto(s)
Calpaína/genética , Regulación Neoplásica de la Expresión Génica , Células Fotorreceptoras/metabolismo , ARN Neoplásico/genética , Neoplasias de la Retina/genética , Retinoblastoma/genética , Sinapsis/metabolismo , Animales , Western Blotting , Calpaína/biosíntesis , Bovinos , Femenino , Humanos , Inmunohistoquímica , Masculino , Ratones , Neoplasias Experimentales , Células Fotorreceptoras/patología , Retina/metabolismo , Retina/patología , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/patología , Retinoblastoma/metabolismo , Retinoblastoma/patología , Células Tumorales Cultivadas
14.
Traffic ; 16(12): 1239-53, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26373354

RESUMEN

Na(+) /K(+) -ATPase (NKA) participates in setting electrochemical gradients, cardiotonic steroid signaling and cellular adhesion. Distinct isoforms of NKA are found in different tissues and subcellular localization patterns. For example, NKA α1 is widely expressed, NKA α3 is enriched in neurons and NKA α4 is a testes-specific isoform found in sperm flagella. In some tissues, ankyrin, a key component of the membrane cytoskeleton, can regulate the trafficking of NKA. In the retina, NKA and ankyrin-B are expressed in multiple cell types and immunostaining for each is striking in the synaptic layers. Labeling for NKA is also prominent along the inner segment plasma membrane (ISPM) of photoreceptors. NKA co-immunoprecipitates with ankyrin-B, but on a subcellular level colocalization of these two proteins varies dependent on the cell type. We used transgenic Xenopus laevis tadpoles to evaluate the subcellular trafficking of NKA in photoreceptors. GFP-NKA α3 and α1 are localized to the ISPM, but α4 is localized to outer segments (OSs). We identified a VxP motif responsible for the OS targeting by using a series of chimeric and mutant NKA constructs. This motif is similar to previously identified ciliary targeting motifs. Given the structural similarities between OSs and flagella, our findings shed light on the subcellular targeting of this testes-specific NKA isoform.


Asunto(s)
Ancirinas/metabolismo , Flagelos/enzimología , Retina/enzimología , Segmento Interno de las Células Fotorreceptoras Retinianas/enzimología , Segmento Externo de las Células Fotorreceptoras Retinianas/enzimología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Secuencias de Aminoácidos , Animales , Ancirinas/genética , Bovinos , Membrana Celular/enzimología , Proteínas Fluorescentes Verdes/genética , Humanos , Inmunoprecipitación , Técnicas In Vitro , Larva/enzimología , Ratones Endogámicos C57BL , Organismos Modificados Genéticamente , Subunidades de Proteína , Transporte de Proteínas , Transducción de Señal , ATPasa Intercambiadora de Sodio-Potasio/genética , Especificidad de la Especie , Xenopus laevis/genética
15.
Invest Ophthalmol Vis Sci ; 56(6): 3514-21, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26030105

RESUMEN

PURPOSE: Hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels are widely expressed in the retina. In photoreceptors, the hyperpolarization-activated current (Ih) carried by HCN1 is important for shaping the light response. It has been shown in multiple systems that trafficking HCN1 channels to specific compartments is key to their function. The localization of HCN1 in photoreceptors is concentrated in the plasma membrane of the inner segment (IS). The mechanisms controlling this localization are not understood. We previously identified a di-arginine endoplasmic reticulum (ER) retention motif that negatively regulates the surface targeting of HCN1. In this study, we sought to identify a forward trafficking signal that could counter the function of the ER retention signal. METHODS: We studied trafficking of HCN1 and several mutants by imaging their subcellular localization in transgenic X. laevis photoreceptors. Velocity sedimentation was used to assay the assembly state of HCN1 channels. RESULTS: We found the HCN1 N-terminus can redirect a membrane reporter from outer segments (OS) to the plasma membrane of the IS. The sequence necessary for this behavior was mapped to a 20 amino acid region containing a leucine-based ER export motif. The ER export signal is necessary for forward trafficking but not channel oligomerization. Moreover, this ER export signal alone counteracted the di-arginine ER retention signal. CONCLUSIONS: We identified an ER export signal in HCN1 that functions with the ER retention signal to maintain equilibrium of HCN1 between the endomembrane system and the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Inmunohistoquímica , Modelos Animales , Sinapsis/metabolismo , Xenopus laevis
16.
Cell Mol Life Sci ; 72(4): 833-43, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25142030

RESUMEN

Hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels carry Ih, which contributes to neuronal excitability and signal transmission in the nervous system. Controlling the trafficking of HCN1 is an important aspect of its regulation, yet the details of this process are poorly understood. Here, we investigated how the C-terminus of HCN1 regulates trafficking by testing for its ability to redirect the localization of a non-targeted reporter in transgenic Xenopus laevis photoreceptors. We found that HCN1 contains an ER localization signal and through a series of deletion constructs, identified the responsible di-arginine ER retention signal. This signal is located in the intrinsically disordered region of the C-terminus of HCN1. To test the function of the ER retention signal in intact channels, we expressed wild type and mutant HCN1 in HEK293 cells and found this signal negatively regulates surface expression of HCN1. In summary, we report a new mode of regulating HCN1 trafficking: through the use of a di-arginine ER retention signal that monitors processing of the channel in the early secretory pathway.


Asunto(s)
Arginina/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Animales Modificados Genéticamente/metabolismo , Arginina/química , Células HEK293 , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Datos de Secuencia Molecular , Células Fotorreceptoras/metabolismo , Vías Secretoras , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Xenopus laevis/metabolismo
17.
Mol Biol Cell ; 25(17): 2644-9, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25009288

RESUMEN

In vertebrate photoreceptor cells, rapid recovery from light excitation is dependent on the RGS9⋅Gß5 GTPase-activating complex located in the light-sensitive outer segment organelle. RGS9⋅Gß5 is tethered to the outer segment membranes by its membrane anchor, R9AP. Recent studies indicated that RGS9⋅Gß5 possesses targeting information that excludes it from the outer segment and that this information is overridden by association with R9AP, which allows outer segment targeting of the entire complex. It was also proposed that R9AP itself does not contain specific targeting information and instead is delivered to the outer segment in the same post-Golgi vesicles as rhodopsin, because they are the most abundant transport vesicles in photoreceptor cells. In this study, we revisited this concept by analyzing R9AP targeting in rods of wild-type and rhodopsin-knockout mice. We found that the R9AP targeting mechanism does not require the presence of rhodopsin and further demonstrated that R9AP is actively targeted in rods by its SNARE homology domain.


Asunto(s)
Proteínas de la Membrana/metabolismo , Rodopsina/genética , Segmento Externo de la Célula en Bastón/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas de la Membrana/química , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estructura Terciaria de Proteína , Transporte de Proteínas
18.
PLoS One ; 9(1): e85850, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24409334

RESUMEN

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are cation-selective channels present in retina, brain and heart. The activity of HCN channels contributes to signal integration, cell excitability and pacemaker activity. HCN1 channels expressed in photoreceptors participate in keeping light responses transient and are required for normal mesopic vision. The subcellular localization of HCN1 varies among cell types. In photoreceptors HCN1 is concentrated in the inner segments while in other retinal neurons, HCN1 is evenly distributed though the cell. This is in contrast to hippocampal neurons where HCN1 is concentrated in a subset of dendrites. A key regulator of HCN1 trafficking and activity is tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b). Multiple splice isoforms of TRIP8b are expressed throughout the brain and can differentially regulate the surface expression and activity of HCN1. The purpose of the present study was to determine which isoforms of TRIP8b are expressed in the retina and to test if loss of TRIP8b alters HCN1 expression or trafficking. We found that TRIP8b colocalizes with HCN1 in multiple retina neurons and all major splice isoforms of TRIP8b are expressed in the retina. Photoreceptors express three different isoforms. In TRIP8b knockout mice, the ability of HCN1 to traffic to the surface of retinal neurons is unaffected. However, there is a large decrease in the total amount of HCN1. We conclude that TRIP8b in the retina is needed to achieve maximal expression of HCN1.


Asunto(s)
Regulación de la Expresión Génica , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Proteínas de la Membrana/metabolismo , Retina/metabolismo , Empalme Alternativo , Animales , Membrana Celular/metabolismo , Fusión de Flicker , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Peroxinas , Células Fotorreceptoras/metabolismo , Unión Proteica , Isoformas de Proteínas , Transporte de Proteínas
19.
Curr Top Membr ; 72: 231-65, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24210432

RESUMEN

Photoreceptors are exquisitely adapted to transform light stimuli into electrical signals that modulate neurotransmitter release. These cells are organized into several compartments including the unique outer segment (OS). Its whole function is to absorb light and transduce this signal into a change of membrane potential. Another compartment is the inner segment where much of metabolism and regulation of membrane potential takes place and that connects the OS and synapse. The synapse is the compartment where changes in membrane potentials are relayed to other neurons in the retina via release of neurotransmitter. The composition of the plasma membrane surrounding these compartments varies to accommodate their specific functions. In this chapter, we discuss the organization of the plasma membrane emphasizing the protein composition of each region as it relates to visual signaling. We also point out examples where mutations in these proteins cause visual impairment.


Asunto(s)
Membrana Celular/metabolismo , Células Fotorreceptoras/metabolismo , Animales , Canales de Calcio/deficiencia , Canales de Calcio/genética , Canales de Calcio/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Células Fotorreceptoras/química , Retina/anatomía & histología , Rodopsina/metabolismo , Proteínas SNARE/metabolismo , Transducción de Señal , Intercambiador de Sodio-Calcio/metabolismo , Vertebrados/metabolismo
20.
Channels (Austin) ; 7(6): 503-13, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24051672

RESUMEN

Mutations in the CACNA1F gene encoding the Cav1.4 Ca (2+) channel are associated with X-linked congenital stationary night blindness type 2 (CSNB2). Despite the increasing knowledge about the functional behavior of mutated channels in heterologous systems, the pathophysiological mechanisms that result in vision impairment remain to be elucidated. This work provides a thorough functional characterization of the novel IT mouse line that harbors the gain-of-function mutation I745T reported in a New Zealand CSNB2 family. (1) Electroretinographic recordings in IT mice permitted a direct comparison with human data. Our data supported the hypothesis that a hyperpolarizing shift in the voltage-dependence of channel activation-as seen in the IT gain-of-function mutant (2)-may reduce the dynamic range of photoreceptor activity. Morphologically, the retinal outer nuclear layer in adult IT mutants was reduced in size and cone outer segments appeared shorter. The organization of the outer plexiform layer was disrupted, and synaptic structures of photoreceptors had a variable, partly immature, appearance. The associated visual deficiency was substantiated in behavioral paradigms. The IT mouse line serves as a specific model for the functional phenotype of human CSNB2 patients with gain-of-function mutations and may help to further understand the dysfunction in CSNB.


Asunto(s)
Canales de Calcio/genética , Canales de Calcio/metabolismo , Enfermedades Hereditarias del Ojo/genética , Enfermedades Hereditarias del Ojo/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Miopía/genética , Miopía/metabolismo , Ceguera Nocturna/genética , Ceguera Nocturna/metabolismo , Animales , Conducta Animal , Canales de Calcio Tipo L , Modelos Animales de Enfermedad , Enfermedades Hereditarias del Ojo/fisiopatología , Regulación de la Expresión Génica , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Humanos , Masculino , Ratones , Miopía/fisiopatología , Ceguera Nocturna/fisiopatología , Fenotipo , Mutación Puntual , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA