Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 4036, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35821218

RESUMEN

Oligonucleotides that target mRNA have great promise as therapeutic agents for life-threatening conditions but suffer from poor bioavailability, hence high cost. As currently untreatable diseases come within the reach of oligonucleotide therapies, new analogues are urgently needed to address this. With this in mind we describe reduced-charge oligonucleotides containing artificial LNA-amide linkages with improved gymnotic cell uptake, RNA affinity, stability and potency. To construct such oligonucleotides, five LNA-amide monomers (A, T, C, 5mC and G), where the 3'-OH is replaced by an ethanoic acid group, are synthesised in good yield and used in solid-phase oligonucleotide synthesis to form amide linkages with high efficiency. The artificial backbone causes minimal structural deviation to the DNA:RNA duplex. These studies indicate that splice-switching oligonucleotides containing LNA-amide linkages and phosphorothioates display improved activity relative to oligonucleotides lacking amides, highlighting the therapeutic potential of this technology.


Asunto(s)
Oligonucleótidos Antisentido , Oligonucleótidos Fosforotioatos , Amidas , Exones , Oligonucleótidos Antisentido/genética , ARN/química
2.
RSC Chem Biol ; 3(6): 765-772, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35755188

RESUMEN

Oligonucleotides are rapidly emerging as powerful therapeutics for hard to treat diseases. Short single-stranded oligonucleotides can base pair with target RNA and alter gene expression, providing an attractive therapeutic approach at the genetic level. Whilst conceptually appealing, oligonucleotides require chemical modification for clinical use. One emerging approach is to substitute the phosphodiester backbone with other chemical linkages such as triazole. The triazole linkage is inherently resistant to enzymatic degradation, providing stability in vivo, and is uncharged, potentially improving cell-penetration and in vivo distribution. Triazole linkages, however, are known to reduce RNA target binding affinity. Here we show that by attaching pyrene or anthraquinone to the ribose sugar on the 5'-side of the triazole, it is possible to recover duplex stability and restore the splice switching ability of triazole-containing oligonucleotides.

3.
Chem Soc Rev ; 50(23): 13410-13440, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34792047

RESUMEN

The self-assembly of inorganic nanoparticles to larger structures is of great research interest as it allows the fabrication of novel materials with collective properties correlated to the nanoparticles' individual characteristics. Recently developed methods for controlling nanoparticle organisation have enabled the fabrication of a range of new materials. Amongst these, the assembly of nanoparticles using DNA has attracted significant attention due to the highly selective recognition between complementary DNA strands, DNA nanostructure versatility, and ease of DNA chemical modification. In this review we discuss the application of various chemical DNA modifications and molecular intercalators as tools for the manipulation of DNA-nanoparticle structures. In detail, we discuss how DNA modifications and small molecule intercalators have been employed in the chemical and photochemical DNA ligation in nanostructures; DNA rotaxanes and catenanes associated with reconfigurable nanoparticle assemblies; and DNA backbone modifications including locked nucleic acids, peptide nucleic acids and borane nucleic acids, which affect the stability of nanostructures in complex environments. We conclude by highlighting the importance of maximising the synergy between the communities of DNA chemistry and nanoparticle self-assembly with the aim to enrich the library of tools available for the manipulation of nanostructures.


Asunto(s)
Nanopartículas , Nanoestructuras , Ácidos Nucleicos , ADN , Sustancias Intercalantes
4.
J Am Chem Soc ; 143(39): 16293-16301, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34546729

RESUMEN

Triazole linkages (TLs) are mimics of the phosphodiester bond in oligonucleotides with applications in synthetic biology and biotechnology. Here we report the RuAAC-catalyzed synthesis of a novel 1,5-disubstituted triazole (TL2) dinucleoside phosphoramidite as well as its incorporation into oligonucleotides and compare its DNA polymerase replication competency with other TL analogues. We demonstrate that TL2 has superior replication kinetics to these analogues and is accurately replicated by polymerases. Derived structure-biocompatibility relationships show that linker length and the orientation of a hydrogen bond acceptor are critical and provide further guidance for the rational design of artificial biocompatible nucleic acid backbones.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , ADN/química , Triazoles/química , Catálisis , Fosfatos de Dinucleósidos/química , Imitación Molecular
5.
Nucleic Acids Res ; 49(16): 9042-9052, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34403467

RESUMEN

Rolling circle amplification (RCA) is a powerful tool for the construction of DNA nanomaterials such as hydrogels, high-performance scaffolds and DNA nanoflowers (DNFs), hybrid materials formed of DNA and magnesium pyrophosphate. Such DNA nanomaterials have great potential in therapeutics, imaging, protein immobilisation, and drug delivery, yet limited chemistry is available to expand their functionality. Here, we present orthogonal strategies to produce densely modified RCA products and DNFs. We provide methods to selectively modify the DNA component and/or the protein cargo of these materials, thereby greatly expanding the range of chemical functionalities available to these systems. We have used our methodology to construct DNFs bearing multiple surface aptamers and peptides capable of binding to cancer cells that overexpress the HER2 oncobiomarker, demonstrating their potential for diagnostic and therapeutic applications.


Asunto(s)
ADN/química , Nanoestructuras/química , Técnicas de Amplificación de Ácido Nucleico/métodos , Aptámeros de Péptidos/química , Línea Celular Tumoral , Reacción de Cicloadición/métodos , Humanos
6.
Chem Commun (Camb) ; 56(41): 5496-5499, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32292963

RESUMEN

Antisense oligonucleotides are now entering the clinic for hard-to-treat diseases. New chemical modifications are urgently required to enhance their drug-like properties. We combine amide coupling with standard oligonucleotide synthesis to assemble backbone chimera gapmers that trigger an efficient RNase H response while improving serum life time and cellular uptake.


Asunto(s)
Amidas/química , Oligonucleótidos Antisentido/química , Ribonucleasa H/química , Células HeLa , Humanos
7.
Chem Sci ; 9(42): 8110-8120, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30542561

RESUMEN

Cyclic oligonucleotides are valuable targets with a broad range of potential applications spanning molecular biology and nanotechnology. Of particular importance is their role as templates in the rolling circle amplification (RCA) reaction. We describe three different chemical cyclisation methods for the preparation of single-stranded cyclic DNA constructs. These chemical cyclisation reactions are cheaper to carry out than the enzymatic reaction, and more amenable to preparative scale purification and characterisation of the cyclic product. They can also be performed under denaturing conditions and are therefore particularly valuable for cyclic DNA templates that contain secondary structures. The resulting single-stranded cyclic DNA constructs contain a single non-canonical backbone linkage at the ligation point (triazole, amide or phosphoramidate). They were compared to unmodified cyclic DNA in rolling circle amplification reactions using φ-29 and Bst 2.0 DNA polymerase enzymes. The cyclic templates containing a phosphoramidate linkage were particularly well tolerated by φ-29 polymerase, consistently performing as well in RCA as the unmodified DNA controls. Moreover, these phosphoramidate-modified cyclic constructs can be readily produced in oligonucleotide synthesis facilities from commercially available precursors. Phosphoramidate ligation therefore holds promise as a practical, scalable method for the synthesis of fully biocompatible cyclic RCA templates. The triazole-modified cyclic templates generally gave lower and more variable yields of RCA products, a significant proportion of which were double-stranded, while the performances of the templates containing an amide linkage lie in between those of the phosphoramidate- and triazole-containing templates.

8.
Nucleic Acids Res ; 46(15): 7495-7505, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30010979

RESUMEN

Recently reported DNA nanoflowers are an interesting class of organic-inorganic hybrid materials which are prepared using DNA polymerases. DNA nanoflowers combine the high surface area and scaffolding of inorganic Mg2P2O7 nanocrystals with the targeting properties of DNA, whilst adding enzymatic stability and enhanced cellular uptake. We have investigated conditions for chemically modifying the inorganic core of these nanoflowers through substitution of Mg2+ with Mn2+, Co2+ or Zn2+ and have characterized the resulting particles. These have a range of novel nanoarchitectures, retain the enzymatic stability of their magnesium counterparts and the Co2+ and Mn2+ DNA nanoflowers have added magnetic properties. We investigate conditions to control different morphologies, DNA content, hybridization properties, and size. Additionally, we show that DNA nanoflower production is not limited to Ф29 DNA polymerase and that the choice of polymerase can influence the DNA length within the constructs. We anticipate that the added control of structure, size and chemistry will enhance future applications.


Asunto(s)
Cobalto/química , ADN Polimerasa Dirigida por ADN/química , ADN/síntesis química , Manganeso/química , Nanopartículas del Metal/química , Oligonucleótidos/síntesis química , Zinc/química , Fagos de Bacillus/enzimología , Nanotecnología/métodos
9.
Chembiochem ; 17(8): 689-92, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26919579

RESUMEN

Photoaffinity labelling is a useful method for studying how proteins interact with ligands and biomolecules, and can help identify and characterise new targets for the development of new therapeutics. We present the design and synthesis of a novel multifunctional benzophenone linker that serves as both a photo-crosslinking motif and a peptide stapling reagent. Using double-click stapling, we attached the benzophenone to the peptide via the staple linker, rather than by modifying the peptide sequence with a photo-crosslinking amino acid. When applied to a p53-derived peptide, the resulting photoreactive stapled peptide was able to preferentially crosslink with MDM2 in the presence of competing protein. This multifunctional linker also features an extra alkyne handle for downstream applications such as pull-down assays, and can be used to investigate the target selectivity of stapled peptides.


Asunto(s)
Benzofenonas/química , Reactivos de Enlaces Cruzados/química , Péptidos/química , Etiquetas de Fotoafinidad , Proteínas Proto-Oncogénicas c-mdm2/química , Benzofenonas/síntesis química , Química Clic , Reactivos de Enlaces Cruzados/síntesis química , Ligandos , Estructura Molecular
10.
Chem Sci ; 7(4): 2553-2562, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-28660026

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa utilises the cell-cell signalling mechanism known as quorum sensing to regulate virulence. P. aeruginosa produces two quinolone-based quorum sensing signalling molecules; the Pseudomonas quinolone signal (PQS) and its biosynthetic precursor 2-heptyl-4(1H)-quinolone (HHQ). To date, only one receptor (the PqsR protein) has been identified that is capable of binding PQS and HHQ. Here, we report on the synthesis of PQS and HHQ affinity probes for chemical proteomic studies. The PQS affinity probe very effectively captured PqsR in vitro. In addition, we also identified an interaction between PQS and the "orphan" RND efflux pump protein, MexG. The PQS-MexG interaction was further confirmed by purifying MexG and characterizing its ability to bind PQS and HHQ in vitro. Our findings suggest that PQS may have multiple binding partners in the cell and provide important new tools for studying quinolone signalling in P. aeruginosa and other organisms.

11.
Molecules ; 18(10): 11783-96, 2013 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-24071985

RESUMEN

Pseudomonas aeruginosa is a human pathogen associated with a variety of life-threatening nosocomial infections. This organism produces a range of virulence factors which actively cause damage to host tissues. One such virulence factor is pyocyanin, known to play a crucial role in the pathogenesis of P. aeruginosa infections. Previous studies had identified a novel compound capable of strongly inhibiting the production of pyocyanin. It was postulated that this inhibition results from modulation of an intercellular communication system termed quorum sensing, via direct binding of the compound with the LasR protein receptor. This raised the possibility that the compound could be an antagonist of quorum sensing in P. aeruginosa, which could have important implications as this intercellular signaling mechanism is known to regulate many additional facets of P. aeruginosa pathogenicity. However, there was no direct evidence for the binding of the active compound to LasR (or any other targets). Herein we describe the design and synthesis of a biotin-tagged version of the active compound. This could potentially be used as an affinity-based chemical probe to ascertain, in a direct fashion, the active compound's macromolecular biological targets, and thus better delineate the mechanism by which it reduces the level of pyocyanin production.


Asunto(s)
Antibacterianos/farmacología , Biotina/química , Sondas Moleculares/síntesis química , Pseudomonas aeruginosa/metabolismo , Piocianina/biosíntesis , Azidas/síntesis química , Pseudomonas aeruginosa/efectos de los fármacos , Percepción de Quorum , Factores de Virulencia/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...