Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 66(16): 11476-11497, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37561958

RESUMEN

Aiming at the inhaled treatment of pulmonary diseases, the optimization process of the previously reported MAPI compound 92a is herein described. The project was focused on overcoming the chemical stability issue and achieving a balanced bronchodilator/anti-inflammatory profile in rats in order to be confident in a clinical effect without having to overdose at one of the biological targets. The chemical strategy was based on fine-tuning of the substitution pattern in the muscarinic and PDE4 structural portions of the dual pharmacology compounds, also making use of the analysis of a proprietary crystal structure in the PDE4 catalytic site. Compound 10f was identified as a chemically stable, potent, and in vivo balanced MAPI lead compound, as assessed in bronchoconstriction and inflammation assays in rats after intratracheal administration. After the in-depth investigation of the pharmacological and solid-state profile, 10f proved to be safe and suitable for development.


Asunto(s)
Inhibidores de Fosfodiesterasa 4 , Enfermedad Pulmonar Obstructiva Crónica , Ratas , Animales , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Broncodilatadores/farmacología , Broncodilatadores/uso terapéutico , Antiinflamatorios/farmacología , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico
2.
Drug Discov Today ; 27(1): 134-150, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34547449

RESUMEN

Despite the devastating impact of many lung diseases on human health, there is still a significant unmet medical need in respiratory diseases, for which inhaled delivery represents a crucial strategy. More guidance on how to design and carry out multidisciplinary inhaled projects is needed. When designing inhaled drugs, the medicinal chemist must carefully balance the physicochemical properties of the molecule to achieve optimal target engagement in the lung. Although the medicinal chemistry strategy is unique for each project, and will change depending on multiple factors, such as the disease, target, systemic risk, delivery device, and formulation, general guidelines aiding inhaled drug design can be applied and are summarised in this review.


Asunto(s)
Aerosoles/farmacología , Sistemas de Liberación de Medicamentos , Fármacos del Sistema Respiratorio/farmacología , Enfermedades Respiratorias/tratamiento farmacológico , Administración por Inhalación , Química Farmacéutica/métodos , Química Farmacéutica/tendencias , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Humanos
3.
J Med Chem ; 64(13): 9100-9119, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34142835

RESUMEN

In this paper, we report the discovery of dual M3 antagonist-PDE4 inhibitor (MAPI) compounds for the inhaled treatment of pulmonary diseases. The identification of dual compounds was enabled by the intuition that the fusion of a PDE4 scaffold derived from our CHF-6001 series with a muscarinic scaffold through a common linking ring could generate compounds active versus both the transmembrane M3 receptor and the intracellular PDE4 enzyme. Two chemical series characterized by two different muscarinic scaffolds were investigated. SAR optimization was aimed at obtaining M3 nanomolar affinity coupled with nanomolar PDE4 inhibition, which translated into anti-bronchospastic efficacy ex vivo (inhibition of rat trachea contraction) and into anti-inflammatory efficacy in vitro (inhibition of TNFα release). Among the best compounds, compound 92a achieved the goal of demonstrating in vivo efficacy and duration of action in both the bronchoconstriction and inflammation assays in rat after intratracheal administration.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Descubrimiento de Drogas , Inhibidores de Fosfodiesterasa 4/farmacología , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Receptor Muscarínico M3/antagonistas & inhibidores , Animales , Relación Dosis-Respuesta a Droga , Cobayas , Masculino , Estructura Molecular , Inhibidores de Fosfodiesterasa 4/química , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Ratas , Ratas Endogámicas BN , Ratas Sprague-Dawley , Receptor Muscarínico M3/metabolismo , Relación Estructura-Actividad
4.
J Med Chem ; 57(3): 921-36, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24354345

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) has drawn significant interest in the neuroscience research community because it is one of the most compelling targets for a potential disease-modifying Parkinson's disease therapy. Herein, we disclose structurally diverse small molecule inhibitors suitable for assessing the implications of sustained in vivo LRRK2 inhibition. Using previously reported aminopyrazole 2 as a lead molecule, we were able to engineer structural modifications in the solvent-exposed region of the ATP-binding site that significantly improve human hepatocyte stability, rat free brain exposure, and CYP inhibition and induction liabilities. Disciplined application of established optimal CNS design parameters culminated in the rapid identification of GNE-0877 (11) and GNE-9605 (20) as highly potent and selective LRRK2 inhibitors. The demonstrated metabolic stability, brain penetration across multiple species, and selectivity of these inhibitors support their use in preclinical efficacy and safety studies.


Asunto(s)
Encéfalo/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirazoles/química , Pirimidinas/química , Animales , Línea Celular , Hepatocitos/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Macaca fascicularis , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Pirazoles/farmacocinética , Pirazoles/farmacología , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Ratas , Estereoisomerismo , Relación Estructura-Actividad
5.
ACS Med Chem Lett ; 4(1): 85-90, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24900567

RESUMEN

The modulation of LRRK2 kinase activity by a selective small molecule inhibitor has been proposed as a potentially viable treatment for Parkinson's disease. By using aminopyrazoles as aniline bioisosteres, we discovered a novel series of LRRK2 inhibitors. Herein, we describe our optimization effort that resulted in the identification of a highly potent, brain-penetrant aminopyrazole LRRK2 inhibitor (18) that addressed the liabilities (e.g., poor solubility and metabolic soft spots) of our previously disclosed anilino-aminopyrimidine inhibitors. In in vivo rodent PKPD studies, 18 demonstrated good brain exposure and engendered significant reduction in brain pLRRK2 levels post-ip administration. The strategies of bioisosteric substitution of aminopyrazoles for anilines and attenuation of CYP1A2 inhibition described herein have potential applications to other drug discovery programs.

6.
J Med Chem ; 55(22): 9416-33, 2012 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-22985112

RESUMEN

There is a high demand for potent, selective, and brain-penetrant small molecule inhibitors of leucine-rich repeat kinase 2 (LRRK2) to test whether inhibition of LRRK2 kinase activity is a potentially viable treatment option for Parkinson's disease patients. Herein we disclose the use of property and structure-based drug design for the optimization of highly ligand efficient aminopyrimidine lead compounds. High throughput in vivo rodent cassette pharmacokinetic studies enabled rapid validation of in vitro-in vivo correlations. Guided by this data, optimal design parameters were established. Effective incorporation of these guidelines into our molecular design process resulted in the discovery of small molecule inhibitors such as GNE-7915 (18) and 19, which possess an ideal balance of LRRK2 cellular potency, broad kinase selectivity, metabolic stability, and brain penetration across multiple species. Advancement of GNE-7915 into rodent and higher species toxicity studies enabled risk assessment for early development.


Asunto(s)
Encéfalo/metabolismo , Morfolinas/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirimidinas/farmacología , Animales , Diseño de Fármacos , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Macaca fascicularis , Ratones , Ratones Transgénicos , Modelos Moleculares , Morfolinas/síntesis química , Morfolinas/farmacocinética , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacocinética , Pirimidinas/síntesis química , Pirimidinas/farmacocinética , Ratas , Bibliotecas de Moléculas Pequeñas , Distribución Tisular
7.
Int J Food Microbiol ; 157(3): 375-83, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22726726

RESUMEN

Moulds are able to cause spoilage in preserved foods through degradation of the preservatives using the Pad-decarboxylation system. This causes, for example, decarboxylation of the preservative sorbic acid to 1,3-pentadiene, a volatile compound with a kerosene-like odour. Neither the natural role of this system nor the range of potential substrates has yet been reported. The Pad-decarboxylation system, encoded by a gene cluster in germinating spores of the mould Aspergillus niger, involves activity by two decarboxylases, PadA1 and OhbA1, and a regulator, SdrA, acting pleiotropically on sorbic acid and cinnamic acid. The structural features of compounds important for the induction of Pad-decarboxylation at both transcriptional and functionality levels were investigated by rtPCR and GCMS. Sorbic and cinnamic acids served as transcriptional inducers but ferulic, coumaric and hexanoic acids did not. 2,3,4,5,6-Pentafluorocinnamic acid was a substrate for the enzyme but had no inducer function; it was used to distinguish induction and competence for decarboxylation in combination with the analogue chemicals. The structural requirements for the substrates of the Pad-decarboxylation system were probed using a variety of sorbic and cinnamic acid analogues. High decarboxylation activity, ~100% conversion of 1mM substrates, required a mono-carboxylic acid with an alkenyl double bond in the trans (E)-configuration at position C2, further unsaturation at C4, and an overall molecular length between 6.5Å and 9Å. Polar groups on the phenyl ring of cinnamic acid abolished activity (no conversion). Furthermore, several compounds were shown to block Pad-decarboxylation. These compounds, primarily aldehyde analogues of active substrates, may serve to reduce food spoilage by moulds such as A. niger. The possible ecological role of Pad-decarboxylation of spore self-inhibitors is unlikely and the most probable role for Pad-decarboxylation is to remove cinnamic acid-type inhibitors from plant material and allow uninhibited germination and growth of mould spores.


Asunto(s)
Aspergillus niger/genética , Aspergillus niger/metabolismo , Carboxiliasas/genética , Conservantes de Alimentos/metabolismo , Ácidos/metabolismo , Alcadienos/metabolismo , Aspergillus niger/crecimiento & desarrollo , Carboxiliasas/metabolismo , Cinamatos/química , Descarboxilación , Hongos/metabolismo , Pentanos/metabolismo , Ácido Sórbico/metabolismo , Ácido Sórbico/farmacología , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo , Transcripción Genética
8.
Org Biomol Chem ; 6(8): 1478-97, 2008 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-18385855

RESUMEN

A new, second generation, total synthesis of ulapualide A (1), whose stereochemistry was recently determined from X-ray analysis of its complex with the protein actin, is described. The synthesis is designed and based on some speculation of the biosynthetic origin of the contiguous tris-oxazole unit in ulapualide A, alongside that of the related co-metabolites that contain only two oxazole rings, e.g. 6 and 7. The mono-oxazole carboxylic acid 67b and the mono-oxazole secondary 55b alcohol which, together, contain all of the 10 asymmetric centres in the natural metabolite, were first elaborated using a combination of contemporary asymmetric synthesis protocols. Esterification of 67b with 55b under Yamaguchi conditions gave the ester 77 which was then converted into the omega-amino acid 18a following simultaneous deprotection of the t-butyl ester and the N-Boc protecting groups. Macrolactamisation of 18a, using HATU, now gave the key intermediate macrolactam 17, containing two of the three oxazole rings in ulapualide A (1). A number of procedures were used to introduce the third oxazole ring in ulapualide A from 17, including: a) cyclodehydration to the oxazoline 78a followed by oxidation using nickel peroxide leading to 76; b) dehydration to the enamide 79, followed by conversion into the methoxyoxazoline 78b, via 80, and elimination of methanol from 78b using camphorsulfonic acid. The tris-oxazole macrolide 76 was next converted into the aldehyde 82b in four straightforward steps, which was then reacted with N-methylformamide, leading to the E-alkenylformamide 83. Removal of the TBDPS protection at C3 in 83 finally gave (-)-ulapualide A, whose 1H and 13C NMR spectroscopic data were indistinguishable from those obtained for naturally derived material. It is likely that the tris-oxazole unit in ulapualide A (1) is derived in nature from a cascade of cyclodehydrations from an acylated tris-serine precursor, e.g.9, followed by oxidation of the resulting tris-oxazoline intermediate, i.e.10. It is also plausible to speculate that the biosynthesis of metabolites related to ulapualide A, e.g. the bis-oxazole 6 and the imide 7, involve cyclisations of just two of the serine units in 9. These speculations were given some credence by carrying out pertinent interconversions involving the bis-oxazole amide 24, the enamide 25, the imide 26, the oxazoline 27 and the tris-oxazole 30 as model compounds. An alternative strategy to the tris-oxazole macrolide intermediate 76 was also examined, involving preliminary synthesis of the aldehyde 73, containing a shortened (C25-C34) side chain from 67b and 47b. A Wadsworth-Emmons olefination reaction between 73 and the phosphonate ester 74 led smoothly to the E-alkene 75, but we were not able to reduce selectively the conjugated enone group in 75 to 76 without simultaneous reduction of the oxazole alkene bond, using a variety of reagents and reaction conditions.


Asunto(s)
Moluscos/química , Oxazoles/química , Animales , Biomimética , Isótopos de Carbono , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/normas , Modelos Moleculares , Conformación Molecular , Oxazoles/síntesis química , Oxazoles/metabolismo , Estándares de Referencia , Especificidad de la Especie , Estereoisomerismo
10.
Biophys J ; 92(11): 3862-7, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17351011

RESUMEN

By the use of x-ray structures and flexible docking, we have developed the first in silico ligand-based view of the structural determinants of the binding of small molecule mimics of gelsolin, natural products bound to actin. Our technique highlights those residues on the actin binding site forming important hydrophobic and hydrogen-bonding interactions with the ligands. Significantly, through the flexible docking of toxin fragments, we have also identified potential residues on the actin binding site that have yet to be exploited. Guided by these observations, we have demonstrated that kabiramide C can be modified to produce a structure with a predicted binding energy increased by 20% while the molecular mass is reduced by 20%, clearly indicating the potential for future elaboration of structures targeting this important component of the cytoskeleton.


Asunto(s)
Actinas/química , Actinas/metabolismo , Biología Computacional , Macrólidos/química , Macrólidos/metabolismo , Modelos Químicos , Unión Proteica/fisiología
11.
J Am Chem Soc ; 127(5): 1481-6, 2005 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-15686381

RESUMEN

A conceptually novel approach to hetero Diels-Alder adducts of carbonyl compounds is described using as the key steps an antibody-mediated kinetic resolution of hydroxyenones followed by a ring-closure process. Various beta-hydroxyenones proved to be very good substrates for antibodies 84G3- and 93F3-catalyzed retro-aldol reactions, allowing the preparation of highly enantiomerically enriched (up to 99% ee) precursors of pyranones. An attractive feature of this methodology is the possibility to convert these acyclic-enantioenriched beta-hydroxyenones into tetrahydropyranones by a conventional Michael-type addition procedure or into the corresponding dihydropyranones using an alternative palladium-catalyzed oxidative ring closure. For the palladium-mediated cyclization, a biphasic system has been implemented that allows the direct preparation of enantiopure dihydropyranones from the corresponding racemic aldol precursors using a sequential antibody-resolution/palladium-cyclization strategy, without isolation of the intermediate enantioenriched hydroxyenones. This bioorganic route is best applied to the preparation of hetero Diels-Alder adducts otherwise derived from less nucleophilic dienes and unactivated dienophiles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA