Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Nat Prod Bioprospect ; 14(1): 27, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722432

Until recently, the main pharmaceuticals used to control cholesterol and prevent cardiovascular disease (CVD) were statin-related drugs, known for their historical side effects. Therefore, there is growing interest in exploring alternatives, such as nutritional and dietary components, that could play a central role in CVD prevention. This review aims to provide a comprehensive understanding of how natural phytosterols found in various diets combat CVDs. We begin with a description of the overall approach, then we explore in detail the different direct and indirect mechanisms that contribute to reducing cardiovascular incidents. Phytosterols, including stigmasterol, ß-sitosterol, ergosterol, and fucosterol, emerge as promising molecules within nutritional systems for protection against CVDs due to their beneficial effects at different levels through direct or indirect cellular, subcellular, and molecular mechanisms. Specifically, the mentioned phytosterols exhibit the ability to diminish the generation of various radicals, including hydroperoxides and hydrogen peroxide. They also promote the activation of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione, while inhibiting lipid peroxidation through the activation of Nrf2 and Nrf2/heme oxygenase-1 (HO-1) signaling pathways. Additionally, they demonstrate a significant inhibitory capacity in the generation of pro-inflammatory cytokines, thus playing a crucial role in regulating the inflammatory/immune response by inhibiting the expression of proteins involved in cellular signaling pathways such as JAK3/STAT3 and NF-κB. Moreover, phytosterols play a key role in reducing cholesterol absorption and improving the lipid profile. These compounds can be used as dietary supplements or included in specific diets to aid control cholesterol levels, particularly in individuals suffering from hypercholesterolemia.

2.
Biomed Pharmacother ; 174: 116432, 2024 May.
Article En | MEDLINE | ID: mdl-38520868

Oxidative stress results from a persistent imbalance in oxidation levels that promotes oxidants, playing a crucial role in the early and sustained phases of DNA damage and genomic and epigenetic instability, both of which are intricately linked to the development of tumors. The molecular pathways contributing to carcinogenesis in this context, particularly those related to double-strand and single-strand breaks in DNA, serve as indicators of DNA damage due to oxidation in cancer cases, as well as factors contributing to epigenetic instability through ectopic expressions. Oxidative stress has been considered a therapeutic target for many years, and an increasing number of studies have highlighted the promising effectiveness of natural products in cancer treatment. In this regard, we present significant research on the therapeutic targeting of oxidative stress using natural molecules and underscore the essential role of oxidative stress in cancer. The consequences of stress, especially epigenetic instability, also offer significant therapeutic prospects. In this context, the use of natural epi-drugs capable of modulating and reorganizing the epigenetic network is beginning to emerge remarkably. In this review, we emphasize the close connections between oxidative stress, epigenetic instability, and tumor transformation, while highlighting the role of natural substances as antioxidants and epi-drugs in the anti-tumoral context.


Antioxidants , Cell Transformation, Neoplastic , Epigenesis, Genetic , Neoplasms , Oxidative Stress , Oxidative Stress/drug effects , Humans , Epigenesis, Genetic/drug effects , Antioxidants/pharmacology , Animals , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/metabolism , Biological Products/pharmacology , DNA Damage/drug effects
3.
Chem Biol Interact ; 392: 110907, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38395253

The regulation of gene expression is fundamental to health and life and is essentially carried out at the promoter region of the DNA of each gene. Depending on the molecular context, this region may be accessible or non-accessible (possibility of integration of RNA polymerase or not at this region). Among enzymes that control this process, DNA methyltransferase enzymes (DNMTs), are responsible for DNA demethylation at the CpG islands, particularly at the promoter regions, to regulate transcription. The aberrant activity of these enzymes, i.e. their abnormal expression or activity, can result in the repression or overactivation of gene expression. Consequently, this can generate cellular dysregulation leading to instability and tumor development. Several reports highlighted the involvement of DNMTs in human cancers. The inhibition or activation of DNMTs is a promising therapeutic approach in many human cancers. In the present work, we provide a comprehensive and critical summary of natural bioactive molecules as primary inhibitors of DNMTs in human cancers. The active compounds hold the potential to be developed as anti-cancer epidrugs targeting DNMTs.


DNA (Cytosine-5-)-Methyltransferases , Neoplasms , Humans , DNA (Cytosine-5-)-Methyltransferases/genetics , Neoplasms/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , CpG Islands , DNA Methylation , Epigenesis, Genetic
4.
Biomed Pharmacother ; 170: 115989, 2024 Jan.
Article En | MEDLINE | ID: mdl-38103309

Cyanobacteria and microalgae contain various phytochemicals, including bioactive components in the form of secondary metabolites, namely flavonoids, phenolic acids, terpenoids, and tannins, with remarkable anticancer effects. This review highlights the recent advances in bioactive compounds, with potential anticancer activity, produced by cyanobacteria and microalgae. Previous in vitro investigations showed that many of these bioactive compounds exhibit potent effects against different human cancer types, such as leukemia and breast cancers. Multiple mechanisms implicated in the antitumor effect of these compounds were elucidated, including their ability to target cellular, subcellular, and molecular checkpoints linked to cancer development and promotion. Recent findings have highlighted various mechanisms of action of bioactive compounds produced by cyanobacteria and microalgae, including induction of autophagy and apoptosis, inhibition of telomerase and protein kinases, as well as modulation of epigenetic modifications. In vivo investigations have demonstrated a potent anti-angiogenesis effect on solid tumors, as well as a reduction in tumor volume. Some of these compounds were examined in clinical investigations for certain types of cancers, making them potent candidates/scaffolds for antitumor drug development.


Antineoplastic Agents , Cyanobacteria , Microalgae , Neoplasms , Humans , Microalgae/chemistry , Cyanobacteria/metabolism , Biological Factors , Antineoplastic Agents/chemistry , Neoplasms/drug therapy
5.
Heliyon ; 9(11): e21222, 2023 Nov.
Article En | MEDLINE | ID: mdl-38053906

Lavandula stoechas, a Mediterranean plant, renowned in traditional medicine for its health benefits, is also arousing strong interest associated with its essential oils (EOs) with promising therapeutic properties. The aim of this study was to analyze the chemical composition of the plant, as well as to study its major activities, including antioxidant, anti-diabetic, dermatoprotective, anti-inflammatory, and antibacterial effects, focusing on its major molecules. Using the GC-MS method, the main compounds identified in L. stoechas EO (LSEO) were fenchone (31.81 %) and camphor (29.60 %), followed by terpineol (13.14 %) and menthone (8.96 %). To assess their antioxidant activity, three in vitro methods were used (DPPH, FRAP, and ABTS). The results revealed that LSEO exhibited the best antiradical property (54 ± 62 µg/mL) according to the DPPH test, while fenchone demonstrated the highest antioxidant capacity (87 ± 92 µg/mL) in the FRAP test, and camphor displayed the highest antioxidant capacity (96 ± 32 µg/mL) in the ABTS test. However, these results were lower than those obtained by Trolox used as a reference. In addition, study also explored the anti-diabetic potential of LSEO and its major compounds by evaluating their inhibitory activity towards two digestive enzymes, α-glucosidase and α-amylase. Camphor (76.92 ± 2.43 µg/mL) and fenchone (69.03 ± 2.31 µg/mL) exhibited the best inhibitory activities for α-amylase and α-glucosidase assays, respectively. Interestingly, all elements of the study exerted activities superior to those of acarbose, regardless of the test performed. In contrast, the evaluation of the dermatoprotective potential was carried out in vitro by targeting two enzymes involved in cutaneous processes, tyrosinase and elastase. In this light, fenchone (53.14 ± 3.06 µg/mL) and camphor (48.39 ± 1.92 µg/mL) were the most active against tyrosinase and elastase, respectively. It should be noted that the effect of both molecules, as well as that of LSEO, ranged between 53.14 ± 3.06 and 97.45 ± 5.22 µg/mL, which was significantly lower than the standard, quercetin (IC50 of 246.90 ± 2 0.54 µg/mL) against tyrosinase. Furthermore, the anti-inflammatory potential of these elements has been studied by evaluating their ability to inhibit lipooxygenase (LOX), a class of enzymes involved in the inflammatory process in the human body. As a result, the LSEO demonstrated a remarkable effect with an IC50 of 6.34 ± 1.29 µg/mL, which was almost comparable to the standard, quercetin (IC50 = 3.93 ± 0.45 µg/mL). Concerning the antibacterial potential, we carried out a quantitative analysis of the various products tested, revealing a bactericidal activity of the LSEO against the strain L. monocytogenes ATCC 13932 at a minimum effective concentration (MIC = CMB = 0.25). Overall, LSEOs offer significant potential as a source of natural antioxidants, and antidiabetic and anti-inflammatory agents, as well as dermatoprotective and antibacterial compounds. Its major molecules, fenchone and camphor, showed promising activity in these areas of study, making it a valuable candidate for future research and development in the field of natural medicine.

6.
Biomed Pharmacother ; 169: 115783, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37944439

Nuclear receptors (NRs) represent intracellular proteins that function as a signaling network of transcriptional factors to control genes in response to a variety of environmental, dietary, and hormonal stimulations or serve as orphan receptors lacking a recognized ligand. They also play an essential role in normal development, metabolism, cell growth, cell division, physiology, reproduction, and homeostasis and function as biological markers for tumor subclassification and as targets for hormone therapy. NRs, including steroid hormone receptors (SHRs), have been studied as tools to examine the fundamentals of transcriptional regulation within the development of mammals and human physiology, in addition to their links to disturbances. In this regard, it is widely recognized that aberrant NR signaling is responsible for the pathological growth of hormone-dependent tumors in response to SHRs dysregulation and consequently represents a potential therapeutic candidate in a range of diseases, as in the case of prostate cancer and breast cancer. On the other hand, phytosterols are a group of plant-derived compounds that act directly as ligands for NRs and have proven their efficacy in the management of diabetes, heart diseases, and cancers. However, these plants are not suggested in cases of hormone-dependent cancer since a certain group of plants contains molecules with a chemical structure similar to that of estrogens, which are known as phytoestrogens or estrogen-like compounds, such as lignans, coumestans, and isoflavones. Therefore, it remains an open and controversial debate regarding whether consuming a phytosterol-rich diet and adopting a vegetarian lifestyle like the Mediterranean diet may increase the risk of developing steroid hormone-dependent cancers by constitutively activating SHRs and thereby leading to tumor transformation. Overall, the purpose of this review is to better understand the relevant mechanistic pathways and explore epidemiological investigations in order to establish that phytosterols may contribute to the activation of NRs as cancer drivers in hormone-dependent cancers.


Breast Neoplasms , Phytosterols , Receptors, Steroid , Animals , Humans , Male , Estrogens/metabolism , Mammals , Phytoestrogens , Receptors, Cytoplasmic and Nuclear , Receptors, Steroid/chemistry , Receptors, Steroid/physiology , Steroids
7.
Biomed Pharmacother ; 165: 115212, 2023 Sep.
Article En | MEDLINE | ID: mdl-37541175

Cancer progression is strongly affected by epigenetic events in addition to genetic modifications. One of the key elements in the epigenetic control of gene expression is histone modification through acetylation, which is regulated by the synergy between histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs are thought to offer considerable potential for the development of anticancer medications, particularly when used in conjunction with other anticancer medications and/or radiotherapy. Belinostat (Beleodaq, PXD101) is a pan-HDAC unsaturated hydroxamate inhibitor with a sulfonamide group that has been approved by the U.S. Food and Drug Administration (FDA) for the treatment of refractory or relapsed peripheral T-cell lymphoma (PTCL) and solid malignancies or and other hematological tissues. This drug modifies histones and epigenetic pathways. Because HDAC and HAT imbalance can lead to downregulation of regulatory genes, resulting in tumorigenesis. Inhibition of HDACs by belinostat indirectly promotes anti-cancer therapeutic effect by provoking acetylated histone accumulation, re-establishing normal gene expressions in cancer cells and stimulating other routes such as the immune response, p27 signaling cascades, caspase 3 activation, nuclear protein poly (ADP-ribose) polymerase-1 (PARP-1) degradation, cyclin A (G2/M phase), cyclin E1 (G1/S phase) and other events. In addition, belinostat has already been discovered to increase p21WAF1 in a number of cell lines (melanoma, prostate, breast, lung, colon, and ovary). This cyclin-dependent kinase inhibitor actually has a role in processes that cause cell cycle arrest and apoptosis. Belinostat's clinical effectiveness, comprising Phase I and II studies within the areas of solid and hematological cancers, has been evidenced through several investigative trials that have supported its potential to be a valuable anti-cancer drug. The purpose of this research was to provide insight on the specific molecular processes through which belinostat inhibits HDAC. The ability to investigate new therapeutic options employing targeted therapy and acquire a deeper understanding of cancer cell abnormalities may result from a better understanding of these particular routes.


Antineoplastic Agents , Neoplasms , Male , Female , Humans , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histones/metabolism , Apoptosis , Neoplasms/drug therapy , Neoplasms/genetics , Histone Deacetylases/metabolism , Cell Line, Tumor
8.
Biomed Pharmacother ; 165: 115159, 2023 Sep.
Article En | MEDLINE | ID: mdl-37481929

Plant bioactive molecules could play key preventive and therapeutic roles in chronological aging and the pathogenesis of many chronic diseases, often accompanied by increased oxidative stress and low-grade inflammation. Dietary antioxidants, including genkwanin, could decrease oxidative stress and the expression of pro-inflammatory cytokines or pathways. The present study is the first comprehensive review of genkwanin, a methoxyflavone found in several plant species. Indeed, natural sources, and pharmacokinetics of genkwanin, the biological properties were discussed and highlighted in detail. This review analyzed and considered all original studies related to identification, isolation, quantification, investigation of the biological and pharmacological properties of genkwanin. We consulted all published papers in peer-reviewed journals in the English language from the inception of each database to 12 May 2023. Different phytochemical demonstrated that genkwanin is a non-glycosylated flavone found and isolated from several medicinal plants such as Genkwa Flos, Rosmarinus officinalis, Salvia officinalis, and Leonurus sibiricus. In vitro and in vivo biological and pharmacological investigations showed that Genkwanin exhibits remarkable antioxidant and anti-inflammatory activities, genkwanin, via activation of glucokinase, has shown antihyperglycemic activity with a potential role against metabolic syndrome and diabetes. Additionally, it revealed cardioprotective and neuroprotective properties, thus reducing the risk of cardiovascular diseases and assisting against neurodegenerative diseases. Furthermore, genkwanin showed other biological properties like antitumor capability, antibacterial, antiviral, and dermato-protective effects. The involved mechanisms include sub-cellular, cellular and molecular actions at different levels such as inducing apoptosis and inhibiting the growth and proliferation of cancer cells. Despite the findings from preclinical studies that have demonstrated the effects of genkwanin and its diverse mechanisms of action, additional research is required to comprehensively explore its therapeutic potential. Primarily, extensive studies should be carried out to enhance our understanding of the molecule's pharmacodynamic actions and pharmacokinetic pathways. Moreover, toxicological and clinical investigations should be undertaken to assess the safety and clinical efficacy of genkwanin. These forthcoming studies are of utmost importance in fully unlocking the potential of this molecule in the realm of therapeutic applications.


Flavones , Flavones/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Cytokines/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use
9.
Pan Afr Med J ; 44: 131, 2023.
Article En | MEDLINE | ID: mdl-37333783

Introduction: anemia remains a major public health challenge worldwide, frequently having multifactorial causes and wide-ranging, largely underestimated repercussions. The purpose of this paper is to assess the prevalence of anemia and identify associated factors in a group of children, adults, and pregnant women. Methods: our sample consisted of a total of 1360 volunteers (group I: 410 school-aged children aged 5-11 years; group II: 533 adults aged 16 to 65 years; group III: 417 pregnant women aged 17 to 45 years) randomly selected from different towns of the M'diq-Fnideq prefecture, Morocco from March 2018 to September 2018. Data on socio-demographic, anthropometric, and dietary status were collected from a questionnaire survey. A complete blood count was performed using a hematology analyzer, Sysmex KX21N® (Sysmex Corporation, Kobe, Japan), in the hematology laboratory of the Mohamed VI Hospital of M'diq. Results: anemia was found in 31% of children, 52.4% of adults, and 22.5% of pregnant women. Microcytic hypochromic anemia was the most dominant type of anemia in children, adults, and pregnant women with percentages of 40.6%, 48.7%, and 43.5%, respectively. Mild anemia was much more common than moderate and severe anemia in all groups. Furthermore, anemia was associated with low socioeconomic and educational levels in adults (22.8% versus 27.9%) and pregnant women (18.1% versus 16.8%). Schoolchildren with illiterate parents and low socioeconomic levels are the most affected by anemia, with a prevalence of 75% and 69.44%, respectively. Also, children with insufficient stature are at a high risk for anemia compared to children of normal stature (p<0.001). As for weight for age, the odds ratio (OR) was 4.32. A significant difference between underweight and anemia was revealed (p<0.001). A frequency of meat product, vegetables, and fruit consumption lower than 1.5 times per week increases the risk of anemia in schoolchildren. Conclusion: these findings showed a significant prevalence of anemia in all study groups associated with socioeconomic, anthropometric, and nutritional factors. However, further studies are needed to focus on interventions and etiologies in order to limit potential complications, especially in schoolchildren and pregnant women.


Anemia, Hypochromic , Anemia , Adult , Child , Female , Humans , Pregnancy , Prevalence , Morocco/epidemiology , Anemia/epidemiology , Pregnant Women , Risk Factors , Socioeconomic Factors
10.
Biomed Pharmacother ; 164: 114774, 2023 Aug.
Article En | MEDLINE | ID: mdl-37224749

Romidepsin, also known as NSC630176, FR901228, FK-228, FR-901228, depsipeptide, or Istodax®, is a natural molecule produced by the Chromobacterium violaceum bacterium that has been approved for its anti-cancer effect. This compound is a selective histone deacetylase (HDAC) inhibitor, which modifies histones and epigenetic pathways. An imbalance between HDAC and histone acetyltransferase can lead to the down-regulation of regulatory genes, resulting in tumorigenesis. Inhibition of HDACs by romidepsin indirectly contributes to the anticancer therapeutic effect by causing the accumulation of acetylated histones, restoring normal gene expression in cancer cells, and promoting alternative pathways, including the immune response, p53/p21 signaling cascades, cleaved caspases, poly (ADP-ribose) polymerase (PARP), and other events. Secondary pathways mediate the therapeutic action of romidepsin by disrupting the endoplasmic reticulum and proteasome and/or aggresome, arresting the cell cycle, inducing intrinsic and extrinsic apoptosis, inhibiting angiogenesis, and modifying the tumor microenvironment. This review aimed to highlight the specific molecular mechanisms responsible for HDAC inhibition by romidepsin. A more detailed understanding of these mechanisms can significantly improve the understanding of cancer cell disorders and pave the way for new therapeutic approaches using targeted therapy.


Depsipeptides , Neoplasms , Humans , Histones/metabolism , Depsipeptides/pharmacology , Depsipeptides/therapeutic use , Apoptosis , Neoplasms/drug therapy , Histone Deacetylases/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Cell Line, Tumor , Tumor Microenvironment
11.
Biomed Pharmacother ; 164: 114886, 2023 Aug.
Article En | MEDLINE | ID: mdl-37224752

Panobinostat, also known as Farydak®, LBH589, PNB, or panobinostat lactate, is a hydroxamic acid that has been approved by the Food and Drug Administration (FDA) for its anti-cancer properties. This orally bioavailable drug is classified as a non-selective histone deacetylase inhibitor (pan-HDACi) that inhibits class I, II, and IV HDACs at nanomolar levels due to its significant histone modifications and epigenetic mechanisms. A mismatch between histone acetyltransferases (HATs) and HDACs can negatively affect the regulation of the genes concerned, which in turn can contribute to tumorigenesis. Indeed, panobinostat inhibits HDACs, potentially leading to acetylated histone accumulation, re-establishing normal gene expression in cancer cells, and helping to drive multiple signaling pathways. These pathways include induction of histone acetylation and cytotoxicity for the majority of tested cancer cell lines, increased levels of p21 cell cycle proteins, enhanced amounts of pro-apoptotic factors (such as caspase-3/7 activity and cleaved poly (ADP-ribose) polymerase (PARP)) associated with decreased levels of anti-apoptotic factors [B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra-large (Bcl-XL)], as well as regulation of immune response [upregulated programmed death-ligand 1 (PD-L1) and interferon gamma receptor 1 (IFN-γR1) expression] and other events. The therapeutic outcome of panobinostat is therefore mediated by sub-pathways involving proteasome and/or aggresome degradation, endoplasmic reticulum, cell cycle arrest, promotion of extrinsic and intrinsic processes of apoptosis, tumor microenvironment remodeling, and angiogenesis inhibition. In this investigation, we aimed to pinpoint the precise molecular mechanism underlying panobinostat's HDAC inhibitory effect. A more thorough understanding of these mechanisms will greatly advance our knowledge of cancer cell aberrations and, as a result, provide an opportunity for the discovery of significant new therapeutic perspectives through cancer therapeutics.


Antineoplastic Agents , Neoplasms , Panobinostat , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Histones/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Panobinostat/pharmacology , Treatment Outcome , Tumor Microenvironment , United States , Epigenesis, Genetic
12.
Clin Lab ; 69(4)2023 Apr 01.
Article En | MEDLINE | ID: mdl-37057947

BACKGROUND: The hemogram is the most frequently prescribed laboratory test. It guides the complementary tests essential to the diagnosis and follow-up of the patient. Hematology reference values can be influenced by several parameters such as environmental and genetic factors, rendering it essential to define reference intervals (RIs) for specific populations. This study aimed to determine RIs from a population of healthy adults in Al Hoceima province by following the procedures recommended by the IFCC-CLSI guidelines in 2008 and comparing them to those of similar studies conducted in various countries. METHODS: We initially recruited 977 healthy adults from 18 to 60 years old including 255 men and 722 women, who presented themselves at the provincial hospital center of Al Hoceima (Morocco) for health checkups from February 2019 to September 2019. The erythrocyte, leukocyte, and platelet parameters were investigated using hematology analyzer ABX Pentra XL80 HORIBA® (HORIBA ABX SAS, Kyoto, Japan). RESULTS: The results showed that the RIs of the blood count parameters searched were more or less close to the RIs determined in Caucasian populations. Nevertheless, they were low compared to the limits of the RIs published in the literature for certain erythrocyte and platelet parameters. Our RIs were also similar in their majority, except for some parameters, to the RIs published very recently in a study conducted on a Moroccan population in the Tangier-Tetouan region. In addition, our intervals differ in their majority from those published in a study of a Ghanaian population. CONCLUSIONS: The differences reported by this preliminary work reinforce the need to establish hemogram RIs specific to the Moroccan population through more extensive studies carried out in different regions of Morocco. These studies should avoid misdiagnosis and allow physicians to interpret hematological tests more specifically.


Hematologic Tests , Hematology , Male , Adult , Humans , Female , Adolescent , Young Adult , Middle Aged , Ghana , Blood Cell Count , Erythrocytes , Reference Values
13.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Mar 13.
Article En | MEDLINE | ID: mdl-36908235

The field of nutrigenomics studies the interaction between nutrition and genetics, and how certain dietary patterns can impact gene expression and overall health. The Mediterranean diet (MedDiet), characterized by a high intake of fruits, vegetables, whole grains, and healthy fats, has been linked to better cardiovascular health (CVH) outcomes. This review summarizes the current state of research on the effects of nutrigenomics and MedDiet on cardiovascular health. Results suggest that MedDiet, through its impact on gene expression, can positively influence CVH markers such as blood pressure, lipid profile, and inflammation. However, more research is needed to fully understand the complex interactions between genetics, nutrition, and CVH, and to determine the optimal dietary patterns for individualized care. The aim of this scientific review is to evaluate the current evidence on the effects of nutrigenomics and MedDiet on cardiovascular health. The review summarizes the available studies that have investigated the relationship between nutrition, genetics, and cardiovascular health, and explores the mechanisms by which certain dietary patterns can impact CVH outcomes. The review focuses on the effects of MedDiet, a dietary pattern that is rich in whole foods and healthy fats, and its potential to positively influence CVH through its impact on gene expression. The review highlights the limitations of current research and the need for further studies to fully understand the complex interplay between nutrition, genetics, and cardiovascular health.

14.
Molecules ; 28(4)2023 Feb 10.
Article En | MEDLINE | ID: mdl-36838696

Retama monosperma L. (Boiss.) or Genista monosperma L. (Lam.), known locally as "R'tam", is a spontaneous and annual herb that belongs to the Fabaceae family. It is native to the Mediterranean regions, specifically in the desert areas and across the Middle Atlas in Morocco. This plant has been extensively used in folk medicine and it is rich in bioactive compounds, including polyphenols, flavonoids, and alkaloids. Current research efforts are focusing on the development of novel natural drugs as alternatives to various organic and non-organic chemical products from Retama monosperma. In addition, extract, and isolated compounds obtained from different parts of the chosen plant have been described to exhibit multiple biological and pharmacological properties such as antioxidant, anti-aging, anti-inflammatory, antihypertensive, anti-helminthic, disinfectant, diuretic, and hypoglycemic effects. The plant-derived extract also acts as an antimicrobial agent, which is highly efficient in the treatment of bacterial, viral, and fungal infections. Its antiproliferative effects are associated with some mechanisms, such as the inhibition of cell cycle arrest and apoptosis. In light of these assessments, we critically highlight the beneficial effects of the flowers, stems, seeds extracts, and isolated compounds from R. monosperma (L.) Boiss in human health care, industrial, and other applications, as well as the possible ways to be employed as a potential natural source for future drug discovery.


Fabaceae , Genista , Humans , Fabaceae/chemistry , Plant Extracts/chemistry , Apoptosis , Polyphenols/pharmacology
15.
Clin Lab ; 69(2)2023 Feb 01.
Article En | MEDLINE | ID: mdl-36787569

BACKGROUND: Reference intervals (RIs) for biochemical and hematological parameters are fundamental tools for clinical diagnosis, management, and therapeutic follow-up. In Morocco, the RIs used by clinical laboratories and physicians are derived from western populations. Also, RIs of biochemical and hematological parameters specific to the various Moroccan areas are lacking. This study aimed to determine RIs for biochemical and hematological parameters in apparently healthy voluntary adults by following the procedures recommended by the IFCC-CLSI guidelines in 2008 and comparing them to those of literature and other countries. METHODS: A total of 768 healthy adults from 18 to 60 years old were recruited. Complete blood count and biochemical analyses were performed using hematology analyzer Sysmex KX21N® (Sysmex Corporation, Kobe, Japan) and COBAS INTEGRA®400 plus biochemistry analyzer (Roche, Diagnostics GmbH, Germany) at the laboratory of the hospital Mohamed VI of M'diq, Morocco, and went into effect between November 2017 and December 2020. The data analysis was made by the software SPSS 20.0 and RIs have been established by using the 2.5th and 97.5th percentiles. RESULTS: RIs established include: glucose 3.90 - 6.76 mmol/L for males and 4.01 - 6.87 mmol/L for females; alanine aminotransferase 5.60 - 40.07 U/L for males and 5.60 - 38.71 U/L for females; aspartate aminotransferase 5.60 - 40.08 for males and 5.89 - 39.90 U/L for females; creatinine 47.73 - 113.15 µmol/L for males and 44.64 - 102.28 µmol/L for females; urea 2.2 - 7.6 mmol/L for males and 1.90 - 7.5 mmol/L for females; total cholesterol 2.71 - 5.46 mmol/L for males and 2.64 - 5.89 mmol/L for females; triglycerides 0.58 - 2.01 mmol/L for males and 0.55 - 2.08 mmol/L for females; high-density lipoprotein cholesterol 1.40 - 1.50 mmol/L for males and 1.40 - 1.65 mmol/L for females; and uric acid 157.3 - 410.8 µmol/L for males and 146.1 - 388.5 µmol/L for females. Concerning the hematological parameters, a significant difference (p < 0.05) between both genders was noted for the majority of pa rameters. CONCLUSIONS: The present study underlines the importance to establish RIs specific to the Moroccan population in each region for a more rational and reliable interpretation of biochemical and hematological testing in order to avoid errors in diagnosis and treatment of patients.


Hematology , Male , Female , Humans , Adult , Adolescent , Young Adult , Middle Aged , Morocco , Reference Values , Biomarkers , Mediterranean Region , Cholesterol
16.
Adv Pharmacol Pharm Sci ; 2023: 2482544, 2023.
Article En | MEDLINE | ID: mdl-36636465

Calendula arvensis L. (Asteraceae) is a famous ornamental and medicinal plant widely distributed in Mediterranean countries and the southern region of Europe. This reputed species is widely used in traditional medicine in the treatment of many disorders and has various bioactivities, especially anti-inflammatory, antiviral, antimutagenic, antimicrobial, insecticidal, antioxidant, and immunomodulatory activities. The present review was conducted to provide a critical review of the comprehensive and current knowledge regarding C. arvensis species, in particular, its taxonomy and geographical distribution, botanical description, medicinal uses, phytochemical compounds, pharmacological properties, and toxicity investigations. The data collected on C. arvensis were obtained using different scientific research databases such as PubMed, SciFinder, SpringerLink, Web of Science, Science Direct, Google Scholar, Wiley Online, and Scopus. Phytochemical screening of different C. arvensis extracts and essential oils showed their richness in bioactive compounds, particularly in fatty acids, sterols, phenolics, flavonoids, saponins, tannins, alkaloids, and terpenoid compounds. The findings of this review showed that the pharmacological activities of C. arvensis confirm its importance and diversity as a traditional remedy for many diseases. This plant presents a wide range of bioactivities, namely, anti-inflammatory, antimicrobial, antitrypanosomial, antitumoral, antimutagenic, and immunomodulatory activities, as well as hemolytic properties and wound treatment. Nevertheless, pharmacokinetic validation and toxicological examinations are required to detect any possible toxicity for future clinical trials.

17.
Crit Rev Food Sci Nutr ; 63(28): 9187-9216, 2023.
Article En | MEDLINE | ID: mdl-35416738

For persons who survive with progressive cancer, nutritional therapy and exercise may be significant factors to improve the health condition and life quality of cancer patients. Nutritional therapy and medications are essential to managing progressive cancer. Cancer survivors, as well as cancer patients, are mostly extremely encouraged to search for knowledge about the selection of diet, exercise, and dietary supplements to recover as well as maintain their treatment consequences, living quality, and survival of patients. A healthy diet plays an important role in cancer treatment. Different articles are studied to collect information and knowledge about the use of nutrients in cancer treatment as well as cancer prevention. The report deliberates nutrition and exercise strategies during the range of cancer care, emphasizing significant concerns during treatment of cancer and for patients of advanced cancer, but concentrating mostly on the requirements of the population of persons who are healthy or who have constant disease following their repossession from management. It also deliberates choice nutrition and exercise problems such as dietary supplements, food care, food selections, and weight; problems interrelated to designated cancer sites, and common questions about diet, and cancer survival. Decrease the side effects of medicines both during and after treatment.


Diet , Neoplasms , Humans , Dietary Supplements , Nutritional Status , Exercise , Nutritional Support , Neoplasms/therapy
18.
Molecules ; 27(24)2022 Dec 19.
Article En | MEDLINE | ID: mdl-36558176

Alzheimer's disease remains one of the most widespread neurodegenerative reasons for dementia worldwide and is associated with considerable mortality and morbidity. Therefore, it has been considered a priority for research. Indeed, several risk factors are involved in the complexity of the therapeutic ways of this pathology, including age, traumatic brain injury, genetics, exposure to aluminum, infections, diabetes, vascular diseases, hypertension, dyslipidemia, and obesity. The pathophysiology of Alzheimer's disease is mostly associated with hyperphosphorylated protein in the neuronal cytoplasm and extracellular plaques of the insoluble ß-amyloid peptide. Therefore, the management of this pathology needs the screening of drugs targeting different pathological levels, such as acetylcholinesterase (AchE), amyloid ß formation, and lipoxygenase inhibitors. Among the pharmacological strategies used for the management of Alzheimer's disease, natural drugs are considered a promising therapeutic strategy. Indeed, bioactive compounds isolated from different natural sources exhibit important anti-Alzheimer effects by their effectiveness in promoting neuroplasticity and protecting against neurodegeneration as well as neuroinflammation and oxidative stress in the brain. These effects involve different sub-cellular, cellular, and/or molecular mechanisms, such as the inhibition of acetylcholinesterase (AchE), the modulation of signaling pathways, and the inhibition of oxidative stress. Moreover, some nanoparticles were recently used as phytochemical delivery systems to improve the effects of phytochemical compounds against Alzheimer's disease. Therefore, the present work aims to provide a comprehensive overview of the key advances concerning nano-drug delivery applications of phytochemicals for Alzheimer's disease management.


Alzheimer Disease , Nanoparticles , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Acetylcholinesterase/metabolism , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Nanoparticles/therapeutic use
19.
Cancers (Basel) ; 14(22)2022 Nov 10.
Article En | MEDLINE | ID: mdl-36428613

The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine-protein kinase, which regulates many biological processes related to metabolism, cancer, immune function, and aging. It is an essential protein kinase that belongs to the phosphoinositide-3-kinase (PI3K) family and has two known signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Even though mTOR signaling plays a critical role in promoting mitochondria-related protein synthesis, suppressing the catabolic process of autophagy, contributing to lipid metabolism, engaging in ribosome formation, and acting as a critical regulator of mRNA translation, it remains one of the significant signaling systems involved in the tumor process, particularly in apoptosis, cell cycle, and cancer cell proliferation. Therefore, the mTOR signaling system could be suggested as a cancer biomarker, and its targeting is important in anti-tumor therapy research. Indeed, its dysregulation is involved in different types of cancers such as colon, neck, cervical, head, lung, breast, reproductive, and bone cancers, as well as nasopharyngeal carcinoma. Moreover, recent investigations showed that targeting mTOR could be considered as cancer therapy. Accordingly, this review presents an overview of recent developments associated with the mTOR signaling pathway and its molecular involvement in various human cancer types. It also summarizes the research progress of different mTOR inhibitors, including natural and synthetised compounds and their main mechanisms, as well as the rational combinations with immunotherapies.

20.
Molecules ; 27(21)2022 Oct 28.
Article En | MEDLINE | ID: mdl-36364152

The purposes of this investigatory study were to determine the chemical composition of the essential oils (EOs) of Origanum compactum from two Moroccan regions (Boulemane and Taounate), as well as the evaluation of their biological effects. Determining EOs' chemical composition was performed by a gas chromatography-mass spectrophotometer (GC-MS). The antioxidant activity of EOs was evaluated using free radical scavenging ability (DPPH method), fluorescence recovery after photobleaching (FRAP), and lipid peroxidation inhibition assays. The anti-inflammatory effect was assessed in vitro using the 5-lipoxygenase (5-LOX) inhibition test and in vivo using the carrageenan-induced paw edema model. Finally, the antibacterial effect was evaluated against several strains using the disk-diffusion assay and the micro-dilution method. The chemical constituent of O. compactum EO (OCEO) from the Boulemane zone is dominated by carvacrol (45.80%), thymol (18.86%), and α-pinene (13.43%). However, OCEO from the Taounate zone is rich in 3-carene (19.56%), thymol (12.98%), and o-cymene (11.16%). OCEO from Taounate showed higher antioxidant activity than EO from Boulemane. Nevertheless, EO from Boulemane considerably inhibited 5-LOX (IC50 = 0.68 ± 0.02 µg/mL) compared to EO from Taounate (IC50 = 1.33 ± 0.01 µg/mL). A similar result was obtained for tyrosinase inhibition with Boulemane EO and Taounate EO, which gave IC50s of 27.51 ± 0.03 µg/mL and 41.83 ± 0.01 µg/mL, respectively. The in vivo anti-inflammatory test showed promising effects; both EOs inhibit and reduce inflammation in mice. For antibacterial activity, both EOs were found to be significantly active against all strains tested in the disk-diffusion test, but O. compactum EO from the Boulemane region showed the highest activity. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) for O. compactum EO from the Boulemane region ranged from 0.06 to 0.25% (v/v) and from 0.15 to 0.21% (v/v) for O. compactum from the Taounate region. The MBC/MIC index revealed that both EOs exhibited remarkable bactericidal effects.


Oils, Volatile , Origanum , Mice , Animals , Origanum/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Thymol , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Inflammatory Agents/pharmacology
...