Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Front Nutr ; 11: 1338482, 2024.
Article En | MEDLINE | ID: mdl-38505264

Petroselinum sativum, known as parsley, is a fragrant herb that possesses a rich heritage of utilization in traditional medicinal practices. In this study, we annotated the phytocontents of the aqueous and ethanolic extracts of P. sativum and investigated their antioxidant, cytoprotective, antiaging, wound healing, and antibacterial activities. LC-MS/MS analysis of both extracts revealed the presence of 47 compounds belonging to diverse groups including organic acids, phenolic acids, and flavonoids. By MTT assay, the extracts were fully biocompatible on immortalized human keratinocytes (HaCaT) while they inhibited intracellular ROS formation (DCFDA assay) and prevented GSH depletion (DTNB assay) upon UVA exposure. In addition, the extracts were potent in inhibiting the in vitro activities of skin-related enzymes mainly elastase, tyrosinase, collagenase and hyaluronidase. Using the scratch assay, P. sativum aqueous extract significantly enhanced wound closure when compared to untreated HaCaT cells. Moreover, both extracts inhibited Pseudomonas aeruginosa's growth, reduced biofilm formation, and impaired the swimming and swarming motilities. Also, the aqueous extract was able to inhibit the production of bacterial pigments on plates. These findings strongly suggest the usefulness of P. sativum as a source of phytochemicals suitable for dermo-cosmeceutical applications.

2.
Molecules ; 28(3)2023 Jan 20.
Article En | MEDLINE | ID: mdl-36770704

For many decades, natural resources have traditionally been employed in skin care. Here, we explored the phytochemical profile of the aqueous and ethanolic leaf extracts of Cupressus arizonica Greene and assessed their antioxidant, antiaging and antibacterial activities in vitro. Liquid chromatography-mass spectrometry (LC-MS/MS) analysis led to the tentative identification of 67 compounds consisting mainly of phenolic and fatty acids, diterpene acids, proanthocyanidins and flavonoid and biflavonoid glycosides. The aqueous extract demonstrated substantial in vitro antioxidant potential at FRAP and DPPH assays and inhibited the four target enzymes (collagenase, elastase, tyrosinase, and hyaluronidase) engaged in skin remodeling and aging with IC50 values close to those of the standard drugs. Moreover, the aqueous extract at 25 mg/mL suppressed biofilm formation by Pseudomonas aeruginosa, a bacterial pathogen causing common skin manifestations, and decreased its swarming and swimming motilities. In conclusion, C. arizonica leaves can be considered a promising candidate for potential application in skin aging.


Cosmeceuticals , Cupressaceae , Cupressus , Antioxidants/pharmacology , Chromatography, Liquid , Tandem Mass Spectrometry , Phytochemicals/pharmacology , Phytochemicals/analysis , Plant Extracts/chemistry
3.
Insects ; 13(10)2022 Oct 13.
Article En | MEDLINE | ID: mdl-36292878

The wild cochineal Dactylopius opuntiae (Hemiptera: Dactylopiidae) is one of the major insect pests of the prickly pear Opuntia ficus-indica (L.) in Morocco, a well-known fruit and vegetable crop of arid and semi-arid regions around the world. The present study investigated the insecticidal potential of six extracts (three aqueous and three hydroalcoholic (MeOH/H2O, 20/80 (v/v)) from Atriplex halimus (leaves), Salvia rosmarinus (leaves) and Cuminum cyminum (seeds) to control nymphs and adult females of D. opuntiae under laboratory and greenhouse conditions. Out of the tested samples, A. halimus aqueous extract showed the highest activity, inducing mortality rates of 67.04% (after 4 days) and 85% (after 8 days) on nymphs and adult females of D. opuntiae, respectively, at a concentration of 5% under laboratory conditions. It also showed the highest mortality rate of nymphs with 100% (4 days after application) and 83.75% of adult females (7 days after the second application) at a concentration of 5% when combined with black soap at 10 g/L under greenhouse conditions. The difference in the toxicity of plant species of the study was correlated with their saponin content. A total of 36 of these triterpene glucosides were suggested after a comprehensive LC-MSn profiling of the most active extract, A. halimus, in addition to phytoecdysones and glycosylated phenolic acids and flavonoids. These findings provided evidence that the aqueous leaf extract of A. halimus could be incorporated in the management of the wild cochineal as an alternative to chemical insecticides.

4.
Oxid Med Cell Longev ; 2022: 6487430, 2022.
Article En | MEDLINE | ID: mdl-35663202

Growing concern for public health has increased the need to change the paradigm towards a healthcare system that advocates holistic practices while reducing adverse effects. Herbal therapy is becoming an integral part of the therapeutic arsenal, and several successful plant-derived compounds/molecules are being introduced into the market. The medicinal plants belonging to the genus Thymus are among the most important species within the Lamiaceae family. One of them is Thymus algeriensis which is mainly distributed in the Mediterranean region. For a long time, this species has been used in traditional medicine to treat several disorders and diseases including inflammation, diabetes, rheumatism, digestive, and respiratory affections. This review describes the traditional uses, phytochemical composition, and biological and pharmacological activities of T. algeriensis extracts. Data were obtained using electronic databases such as SciFindern, ScienceDirect, Scopus, and Web of Science. Several plant-based extracts and a broad spectrum of identified secondary metabolites were highlighted and discussed with respective activities and modes of action. T. algeriensis represents a promising natural resource for the pharmaceutical industry mainly for antioxidant, anti-inflammatory, antimicrobial, and anticancer activities. Considering these findings, more research is needed to transmute the conventional uses of T. algeriensis into scientifically sound information. Moreover, extensive preclinical, clinical, toxicological, and pharmacokinetic trials on this species and its derivatives compounds are required to underpin the mechanisms of action and ensure its biosafety and efficiency. This comprehensive review provides a scientific basis for future investigations on the use of T. algeriensis and derived compounds in health maintenance and promotion and disease prevention.


Plants, Medicinal , Thymus Plant , Ethnopharmacology , Medicine, Traditional , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
5.
Oxid Med Cell Longev ; 2022: 7502185, 2022.
Article En | MEDLINE | ID: mdl-35677104

The myrtle family, Myrtaceae, constitutes over 5500 species, and Syzygium is considered the largest genus of the flowering plants within the family. The watery rose apple, Syzygium aqueum, is a traditional medicinal plant with various bioactive compounds distributed in all plant parts. These include phenolic compounds, flavonoids, tannins, terpenoids, and essential oils. S. aqueum extracts and their isolated compounds showed multiple beneficial biological effects such as antibacterial, antifungal, antidiabetic, analgesic, antimalarial, antioxidant, anti-inflammatory, and anticancer activities. This review is aimed at discussing all the available information about the nutritional value, traditional uses, and therapeutic properties of the leaves, fruit, and stem bark of the plant, in addition to the distribution of phytoconstituents in its different parts as well as recommend future research directions on this species to promote its clinical uses.


Syzygium , Inflammation/drug therapy , Nutritive Value , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Syzygium/chemistry
6.
Oxid Med Cell Longev ; 2022: 3486257, 2022.
Article En | MEDLINE | ID: mdl-35387261

We previously annotated the phytochemical constituents of a root extract from Ximenia americana var. caffra and highlighted its hepatoprotective and hypoglycemic properties. We here extended our study on the leaf extract and identified its phytoconstituents using HPLC-PDA-ESI-MS/MS. In addition, we explored its antioxidant, antibacterial, and antiaging activities in vitro and in an animal model, Caenorhabditis elegans. Results from HPLC-PDA-ESI-MS/MS confirmed that the leaves contain 23 secondary metabolites consisting of condensed tannins, flavonol glycosides, flavone glycosides, and flavonol diglycosides. The leaf extract demonstrated significant antioxidant activity in vitro with IC50 value of 5 µg/mL in the DPPH assay and 18.32 µg/mL in the FRAP assay. It also inhibited four enzymes (collagenase, elastase, hyaluronidase, and tyrosinase) crucially involved in skin remodeling and aging processes with comparable activities to reference drugs along with four pure secondary metabolites identified from the extract. In accordance with the in vitro result, in vivo tests using two transgenic strains of C. elegans demonstrated its ability to reverse oxidative stress. Evidence included an increased survival rate in nematodes treated with the prooxidant juglone to 68.9% compared to the 24.8% in untreated worms and a reduced accumulation of intracellular reactive oxygen species (ROS) in a dose-dependent manner to 77.8%. The leaf extract also reduced levels of the expression of HSP 16.2 in a dose-dependent manner to 86.4%. Nuclear localization of the transcription factor DAF-16 was up to 10 times higher in worms treated with the leaf extract than in the untreated worms. The extract also inhibited the biofilm formation of Pseudomonas aeruginosa (a pathogen in skin infections) and reduced the swimming and swarming mobilities in a dose-dependent fashion. In conclusion, leaves of X. americana are a promising candidate for preventing oxidative stress-induced conditions, including skin aging.


Cosmeceuticals , Olacaceae , Animals , Anti-Bacterial Agents/pharmacology , Antioxidants/metabolism , Caenorhabditis elegans/metabolism , Cosmeceuticals/metabolism , Cosmeceuticals/pharmacology , Glycosides/pharmacology , Olacaceae/metabolism , Oxidative Stress , Phytochemicals/pharmacology , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism , Tandem Mass Spectrometry
...