Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 19469, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945578

RESUMEN

Polyphenolics have been predicted to effectively develop antimicrobial agents for the food industry as food additives and promote human health. This study aims to synthesize pomegranate peel extract (PPE) with silver nanoparticles (AgNPs) against eight foodborne pathogens. Multispectroscopic analysis of UV-vis spectroscopy, Zeta potential, Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) analysis were used to characterize the interaction between PPE and AgNPs. Eight foodborne pathogenic strains (six bacterial and two fungal strains) Bacillus subtilis ATCC 6633, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 8379, Klebsiella pneumoniae ATCC 00607, Salmonella typhi DSM 17058, Shigella sonnei DSM 5570, Aspergillus flavus ATCC 9643, and Rhizopus oryzae ATCC 96382 were used to test the inhibitory potential of PPW-AgNPs. The reaction colour of PPE-AgNPs from yellow to brown indicated that the nanoparticles were successfully formed. The UV absorption of PPE-AgNPs was detected at 440 nm of 0.9 SPR. SEM image of PPE-AgNPs exhibited spherical shapes with a zeta potential of - 20.1 mV. PPE-AgNPs showed high antimicrobial activity against all tested strains. The highest inhibition activity of PPE-AgNPs was recorded for the B. subtilis strain followed by K. pneumonia, while the highest resistance was noticed for R. oryzae. The components of pomegranate peel were analyzed using gas chromatography-mass spectrometry (GC-MS). The major constituents of pomegranate peel is phenol (51.1%), followed by Isocitronellol (19.41%) and 1-Propanol, 2-(2-hydroxypropyl)- (16.05%). PPE is key in the simple, eco-friendly green synthesis of extracellular stable AgNPs as an alternative source for harmful chemical disinfectants.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Granada (Fruta) , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antiinfecciosos/química , Espectroscopía Infrarroja por Transformada de Fourier , Escherichia coli , Extractos Vegetales/farmacología , Extractos Vegetales/química
2.
Sci Rep ; 13(1): 17230, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821509

RESUMEN

Mosquito control in Egypt depends on applying chemical synthetic pesticides that impact negatively on human health and the environment as well as the development of antibiotic and chemical resistance. This study aims to control the 3rd and 4th instars of Culex pipiens larvae using four bacterial strains. According to Phenotypic and molecular identification, the four isolates were identified as Bacillus subtilis MICUL D2023, Serratia marcescens MICUL A2023, Streptomyces albus LARVICID, and Pseudomonas fluorescens MICUL B2023. All strains were deposited in GenBank under accession numbers OQ764791, OQ729954, OQ726575, and OQ891356, respectively. Larvicidal activity of all microbial strain metabolites against a field strain of C. pipiens explored low LC50 results and reached its lowest values on the 3rd day with values of 6.40%, 38.4%, and 46.33% for P. fluorescens, S. albus, and S. marcescens, respectively. In addition, metabolites of P. fluorescence were more toxic than those of S. albus, followed by S. marcescens. B. subtilis shows no larvicidal effect on both field and lab mosquito strains. Microscopic alterations of 3rd and 4th instars showed toxic effects on different body parts (thorax, midgut, and anal gills), including losing external hairs, abdominal breakage, and larvae shrinkage, as well as different histological malformations in the digestive tract, midgut, and cortex. GC-MS analysis detected 51, 30, and 32 different active compounds from S. albus, S. marcescens, and P. fluorescens, respectively. GC detected 1, 2-BENZEA2:A52NEDICARBOXYLIC ACID, 2-Cyclohexene-1-carboxylic-acid-5-2-butenyl-methyl ester, and 3 octadecahydro2R3S4Z9Z-11R-12S from S. albus, S. marcesens, and P. fluorescens, respectively. Total protein, Total carbohydrate, and Acetylcholine esterase activity indicated significantly low levels on the 3rd day. All strain metabolites were safe against HSF cell lines. The docking results confirmed the role of the produced metabolites as larvicidal agents and Acetylcholine esterase inhibition. Such a problem need more studies on applying more and more natural pesticides.


Asunto(s)
Culex , Culicidae , Insecticidas , Plaguicidas , Animales , Humanos , Egipto , Simulación del Acoplamiento Molecular , Acetilcolina/farmacología , Insecticidas/farmacología , Insecticidas/química , Larva , Plaguicidas/farmacología , Serratia marcescens , Esterasas
3.
Sci Rep ; 13(1): 15048, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37700007

RESUMEN

The emergence of antimicrobial resistance in foodborne bacterial pathogens has raised significant concerns in the food industry. This study explores the antimicrobial potential of biosynthesized silver nanoparticles (AgNPs) derived from Agaricus bisporus (Mushroom) against foodborne bacterial pathogens. The biosynthesized AgNPs were characterized using various techniques, including UV-visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, high-resolution scanning electron microscopy with energy dispersive X-ray spectroscopy, dynamic light scattering, and zeta potential analysis. The antibacterial activity of the AgNPs was tested against a panel of foodborne bacterial strains, and their cytotoxicity was evaluated on normal human skin fibroblasts. Among the tested strains, Pseudomonas aeruginosa ATCC 27853 showed the highest sensitivity with an inhibition zone diameter (IZD) of 48 mm, while Klebsiella quasipneumoniae ATTC 700603 and Bacillus cereus ATCC 11778 displayed the highest resistance with IZDs of 20 mm. The silver cations released by AgNPs demonstrated strong bactericidal effects against both Gram-positive (G + ve) and Gram-negative (G - ve) bacteria, as evidenced by the minimum inhibitory concentration/minimum bactericidal concentration (MBC/MIC) ratio. Moreover, cytotoxicity testing on normal human skin fibroblasts (HSF) indicated that AgNPs derived from the mushroom extract were safe, with a cell viability of 98.2%. Therefore, AgNPs hold promise as an alternative means to inhibit biofilm formation in the food industry sector.


Asunto(s)
Agaricus , Antiinfecciosos , Nanopartículas del Metal , Humanos , Plata/farmacología , Antibacterianos/farmacología , Inocuidad de los Alimentos
4.
Mol Biol Rep ; 49(3): 1783-1790, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34837626

RESUMEN

BACKGROUND: Transgenic plants are becoming a more powerful tool in modern biotechnology. Genetic engineering was used in biotech-derived products to create genetically modified (GM) plants resistant to diseases. The onion (Allium cepa, L.) is a common, important perennial vegetable crop grown in Egypt for food and economic value. Onions are susceptible to a variety of fungal infections and diseases. Aspergillus niger is a common onion phytopathogen that causes diseases such as black mould (or black rot), which is a major issue, particularly when exporting onions. A. niger grows between the bulb's outer (dead, flaky) skin and the first fleshy scales, which become water-soaked. Thionin genes produce thionin proteins, which have antimicrobial properties against a variety of phytopathogens, including A. niger. Chitosan nanoparticles act as a carrier for the thionin gene, which allows A. cepa to resist infection by A. niger. METHODS AND RESULTS: Thionin gene (Thio-60) was transformed into A. cepa to be resistance to fungal infection. The gene was loaded on chitosan nanoparticles to be transformed into plants. Transgenic A. cepa had a 27% weight inhibition compared to non-transgenic one, which had a 69% inhibition. The expressed thionin protein has a 52% inhibitory effect on A. niger spore germination. All these findings supported thionin protein's antifungal activity as an antimicrobial peptide. Furthermore, the data presented here demonstrated the efficacy of chitosan nanoparticles in gene transformation. CONCLUSION: The present study describes the benefits of producing transgenic onion resistance to black rot diseases via expression of thionin proteins.


Asunto(s)
Nanopartículas , Cebollas , Aspergilosis , Enfermedades Pulmonares Fúngicas , Cebollas/química , Cebollas/genética , Cebollas/microbiología , Plantas Modificadas Genéticamente/genética , Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...