Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(9): 4176-4184, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38387064

RESUMEN

Photoxenobactin E (1) is a natural product with an unusual thiocarboxylic acid terminus recently isolated from an entomopathogenic bacterium. The biosynthetic gene cluster associated with photoxenobactin E, and other reported derivatives, is very similar to that of piscibactin, the siderophore responsible for the iron uptake among bacteria of the Vibrionaceae family, including potential human pathogens. Here, the reisolation of 1 from the fish pathogen Vibrio anguillarum RV22 cultured under iron deprivation, its ability to chelate Ga(III), and the full NMR spectroscopic characterization of the Ga(III)-photoxenobactin E complex are presented. Our results show that Ga(III)-photoxenobactin E in solution exists in a thiol-thione tautomeric equilibrium, where Ga(III) is coordinated through the sulfur (thiol form) or oxygen (thione form) atoms of the thiocarboxylate group. This report represents the first NMR study of the chemical exchange between the thiol and thione forms associated with thiocarboxylate-Ga(III) coordination, including the kinetics of the interconversion process associated with this tautomeric exchange. These findings show significant implications for ligand design as they illustrate the potential of the thiocarboxylate group as a versatile donor for hard metal ions such as Ga(III).


Asunto(s)
Metales , Tionas , Animales , Humanos , Metales/química , Hierro/química , Sideróforos/química , Compuestos de Sulfhidrilo
2.
mSphere ; 9(1): e0059623, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38078732

RESUMEN

The high-pathogenicity island irp-HPI is widespread in Vibrionaceae and encodes the siderophore piscibactin, as well as the regulator PbtA that is essential for its expression. In this work, we aim to study whether PbtA directly interacts with irp-HPI promoters. Furthermore, we hypothesize that PbtA, and thereby the acquisition of irp-HPI island, may also influence the expression of other genes elsewhere in the bacterial genome. To address this question, an RNAseq analysis was conducted to identify differentially expressed genes after pbtA deletion in Vibrio anguillarum RV22 genetic background. The results showed that PbtA not only modulates the irp-HPI genes but also modulates the expression of a plethora of V. anguillarum core genome genes, inducing nitrate, arginine, and sulfate metabolism, T6SS1, and quorum sensing, while repressing lipopolysaccharide (LPS) production, MARTX toxin, and major porins such as OmpV and ChiP. The direct binding of the C-terminal domain of PbtA to piscibactin promoters (PfrpA and PfrpC), quorum sensing (vanT), LPS transporter wza, and T6SS structure- and effector-encoding genes was demonstrated by electrophoretic mobility shift assay (EMSA). The results provide valuable insights into the regulatory mechanisms underlying the expression of irp-HPI island and its impact on Vibrios transcriptome, with implications in pathogenesis.IMPORTANCEHorizontal gene transfer enables bacteria to acquire traits, such as virulence factors, thereby increasing the risk of the emergence of new pathogens. irp-HPI genomic island has a broad dissemination in Vibrionaceae and is present in numerous potentially pathogenic marine bacteria, some of which can infect humans. Previous works showed that certain V. anguillarum strains exhibit an expanded host range plasticity and heightened virulence, a phenomenon linked to the acquisition of the irp-HPI genomic island. The present work shows that this adaptive capability is likely achieved through comprehensive changes in the transcriptome of the bacteria and that these changes are mediated by the master regulator PbtA encoded within the irp-HPI element. Our results shed light on the broad implications of horizontal gene transfer in bacterial evolution, showing that the acquired DNA can directly mediate changes in the expression of the core genome, with profounds implications in pathogenesis.


Asunto(s)
Islas Genómicas , Compuestos Organofosforados , Vibrio , Humanos , Islas Genómicas/genética , Transcriptoma , Lipopolisacáridos , Vibrio/genética , ADN
3.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37298622

RESUMEN

Aeromonas salmonicida subsp. salmonicida (A. salmonicida), a Gram-negative bacterium causing furunculosis in fish, produces the siderophores acinetobactin and amonabactins in order to extract iron from its hosts. While the synthesis and transport of both systems is well understood, the regulation pathways and conditions necessary for the production of each one of these siderophores are not clear. The acinetobactin gene cluster carries a gene (asbI) encoding a putative sigma factor belonging to group 4 σ factors, or, the ExtraCytoplasmic Function (ECF) group. By generating a null asbI mutant, we demonstrate that AsbI is a key regulator that controls acinetobactin acquisition in A. salmonicida, since it directly regulates the expression of the outer membrane transporter gene and other genes necessary for Fe-acinetobactin transport. Furthermore, AsbI regulatory functions are interconnected with other iron-dependent regulators, such as the Fur protein, as well as with other sigma factors in a complex regulatory network.


Asunto(s)
Aeromonas salmonicida , Aeromonas , Animales , Sideróforos/metabolismo , Aeromonas salmonicida/genética , Factor sigma/genética , Factor sigma/metabolismo , Hierro/metabolismo , Aeromonas/metabolismo
4.
Front Cell Infect Microbiol ; 13: 1197290, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37360528

RESUMEN

Tenacibaculum maritimum, the etiological agent of tenacibaculosis in marine fish, constitutively secretes extracellular products (ECPs) in which protein content has not been yet comprehensively studied. In this work, the prevalence of extracellular proteolytic and lipolytic activities related to virulence was analyzed in 64 T. maritimum strains belonging to the O1-O4 serotypes. The results showed the existence of a great intra-specific heterogeneity in the enzymatic capacity, particularly within serotype O4. Thus, the secretome of a strain belonging to this serotype was characterized by analyzing the protein content of ECPs and the possible production of outer membrane vesicles (OMVs). Notably, the ECPs of T. maritimum SP9.1 contain a large amount of OMVs that were characterized by electron microscopy and purified. Thus, ECPs were divided into soluble (S-ECPs) and insoluble fractions (OMVs), and their protein content was analyzed by a high-throughput proteomic approach. A total of 641 proteins were identified in ECPs including some virulence-related factors, which were mainly found in one of the fractions, either OMVs or S-ECPs. Outer membrane proteins such as TonB-dependent siderophore transporters and the type IX secretion system (T9SS)-related proteins PorP, PorT, and SprA appeared to be mainly associated with OMVs. By contrast, putative virulence factors such as sialidase SiaA, chondroitinase CslA, sphingomyelinase Sph, ceramidase Cer, and collagenase Col were found only in the S-ECPs. These findings clearly demonstrate that T. maritimum releases, through surface blebbing, OMVs specifically enriched in TonB-dependent transporters and T9SS proteins. Interestingly, in vitro and in vivo assays also showed that OMVs could play a key role in virulence by promoting surface adhesion and biofilm formation and maximizing the cytotoxic effects of the ECPs. The characterization of T. maritimum secretome provides insights into ECP function and can constitute the basis for future studies aimed to elucidate the full role of OMVs in the pathogenesis of fish tenacibaculosis.


Asunto(s)
Proteómica , Tenacibaculum , Animales , Virulencia , Proteómica/métodos , Secretoma , Tenacibaculum/metabolismo , Peces , Factores de Virulencia/metabolismo
5.
Inorg Chem ; 62(19): 7503-7514, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37140938

RESUMEN

Stereoselective total synthesis of several analogues of piscibactin (Pcb), the siderophore produced by different pathogenic Gram-negative bacteria, was performed. The acid-sensitive α-methylthiazoline moiety was replaced by a more stable thiazole ring, differing in the configuration of the OH group at the C-13 position. The ability of these Pcb analogues to form complexes with Ga3+ as a mimic of Fe3+ showed that the configuration of the hydroxyl group at C-13 as 13S is crucial for the chelation of Ga3+ to preserve the metal coordination, while the presence of a thiazole ring instead of the α-methylthiazoline moiety does not affect such coordination. A complete 1H and 13C NMR chemical shift assignment of the diastereoisomer mixtures around C9/C10 was done for diagnostic stereochemical disposition. Additionally, density functional theory calculations were performed not only for confirming the stereochemistry of the Ga3+ complex among the six possible diastereoisomers but also for deducing the ability of these to form octahedral coordination spheres with gallium. Finally, the lack of antimicrobial activity of Pcb and Pcb thiazole analogue Ga3+ complexes against Vibrio anguillarum agrees with one of the roles of siderophores in protecting pathogens from metal ion toxicity. The efficient metal coordination shown by this scaffold suggests its possible use as a starting point for the design of new chelating agents or vectors for the development of new antibacterials that exploit the "Trojan horse" strategy using the microbial iron uptake mechanisms. The results obtained will be of great help in the development of biotechnological applications for these types of compounds.


Asunto(s)
Galio , Sideróforos , Sideróforos/química , Teoría Funcional de la Densidad , Hierro/química , Quelantes , Galio/química , Tiazoles
6.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36012135

RESUMEN

Piscibactin is a widespread siderophore system present in many different bacteria, especially within the Vibrionaceae family. Previous works showed that most functions required for biosynthesis and transport of this siderophore are encoded by the high-pathogenicity island irp-HPI. In the present work, using Vibrio anguillarum as a model, we could identify additional key functions encoded by irp-HPI that are necessary for piscibactin production and transport and that have remained unknown. Allelic exchange mutagenesis, combined with cross-feeding bioassays and LC-MS analysis, were used to demonstrate that Irp4 protein is an essential component for piscibactin synthesis since it is the thioesterase required for nascent piscibactin be released from the NRPS Irp1. We also show that Irp8 is a MFS-type protein essential for piscibactin secretion. In addition, after passage through the outer membrane transporter FrpA, the completion of ferri-piscibactin internalization through the inner membrane would be achieved by the ABC-type transporter FrpBC. The expression of this transporter is coordinated with the expression of FrpA and with the genes encoding biosynthetic functions. Since piscibactin is a major virulence factor of some pathogenic vibrios, the elements of biosynthesis and transport described here could be additional interesting targets for the design of novel antimicrobials against these bacterial pathogens.


Asunto(s)
Vibrio , Vibrionaceae , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Islas Genómicas , Sideróforos/metabolismo , Vibrio/genética , Vibrio/metabolismo , Vibrionaceae/genética , Vibrionaceae/metabolismo , Factores de Virulencia/metabolismo
7.
J Inorg Biochem ; 230: 111743, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35124539

RESUMEN

Amonabactins, the siderophores produced by some pathogenic bacteria belonging to Aeromonas genus, can be used for the preparation of conjugates to be imported into the cell using their specific transport machinery. Herein, we report the design and synthesis of a new amonabactin-based fluorescent probe by conjugation of the appropriate amonabactin analogue to sulforhodamine B (AMB-SRB) using a thiol-maleimide click reaction. Growth promotion assays and fluorescence microscopy studies demonstrated that the AMB-SRB fluorescent probe was able to label the fish pathogenic bacterium A. salmonicida subsp. salmonicida through its outer membrane transport (OMT) protein FstC. The labelling of other Aeromonas species, such as the human pathogen A. hydrophila, indicates that this probe can be a very useful molecular tool for studying the amonabactin-dependent iron uptake mechanism. Furthermore, the selective labelling of A. salmonicida and other Aeromonas species in presence of other fish pathogenic bacteria, suggest the potential application of this probe for detection of Aeromonas in water and other fish farming samples through fluorescence assays.


Asunto(s)
Aeromonas , Sideróforos , Aeromonas/metabolismo , Animales , Colorantes Fluorescentes/metabolismo , Hierro/metabolismo , Sideróforos/metabolismo
8.
J Biol Inorg Chem ; 27(1): 133-142, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34792655

RESUMEN

Piscibactin (Pcb) is a labile siderophore widespread among Vibrionaceae. Its production is a major virulence factor of some fish pathogens such as Photobacterium damselae subsp. piscicida and Vibrio anguillarum. Although FrpA was previously suggested as the putative outer membrane transporter (OMT) for ferri-piscibactin, its role in piscibactin uptake was never demonstrated. In this work, we generated mutants of V. anguillarum defective in FrpA and analyzed their ability to use piscibactin as iron source. The results showed that inactivation of frpA completely disables piscibactin utilization, and the original phenotype could be restored by gene complementation, confirming that FrpA is the OMT that mediates ferri-Pcb uptake. Additionally, the ability of several Pcb thiazole analogues, with different configurations at positions 9, 10, and 13, to be internalized through FrpA, was evaluated measuring their ability to promote growth under iron deficiency of several indicator strains. The results showed that while those analogues with a thiazole ring maintain almost the same activity as Pcb, the maintenance of the hydroxyl group present in natural piscibactin configuration at position C-13 is crucial for Fe3+ chelation and, in consequence, for the recognition of the ferri-siderophore by the cognate OMT. All these findings allowed us to propose a Pcb analogue as a good candidate to vectorize antimicrobial compounds, through the Trojan horse strategy, to develop novel compounds against bacterial fish diseases.


Asunto(s)
Enfermedades de los Peces , Vibrio , Animales , Enfermedades de los Peces/microbiología , Proteínas de Transporte de Membrana , Sideróforos/química , Vibrio/genética
9.
Front Microbiol ; 12: 748147, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867865

RESUMEN

The high-pathogenicity island irp-HPI is widespread among Vibrionaceae encoding the piscibactin siderophore system. The expression of piscibactin genes in the fish pathogen Vibrio anguillarum is favored by low temperatures. However, information about the regulatory mechanism behind irp-HPI gene expression is scarce. In this work, in-frame deletion mutants of V. anguillarum defective in the putative regulators AraC1 and AraC2, encoded by irp-HPI, and in the global regulators H-NS and ToxRS, were constructed and their effect on irp-HPI gene expression was analyzed at 15 and 25°C. The results proved that only AraC1 (renamed as PbtA) is required for the expression of piscibactin biosynthesis and transport genes. PbtA inactivation led to an inability to grow under iron restriction, a loss of the outer membrane piscibactin transporter FrpA, and a significant decrease in virulence for fish. Inactivation of the global repressor H-NS, which is involved in silencing of horizontally acquired genes, also resulted in a lower transcriptional activity of the frpA promoter. Deletion of toxR-S, however, did not have a relevant effect on the expression of the irp-HPI genes. Therefore, while irp-HPI would not be part of the ToxR regulon, H-NS must exert an indirect effect on piscibactin gene expression. Thus, the temperature-dependent expression of the piscibactin-encoding pathogenicity island described in V. anguillarum is the result of the combined effect of the AraC-like transcriptional activator PbtA, harbored in the island, and other not yet defined regulator(s) encoded by the genome. Furthermore, different expression patterns were detected within different irp-HPI evolutionary lineages, which supports a long-term evolution of the irp-HPI genomic island within Vibrionaceae. The mechanism that modulates piscibactin gene expression could also be involved in global regulation of virulence factors in response to temperature changes.

10.
Front Cell Infect Microbiol ; 11: 750567, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34760718

RESUMEN

Vibrio neptunius is an inhabitant of mollusc microbiota and an opportunistic pathogen causing disease outbreaks in marine bivalve mollusc species including oysters and clams. Virulence of mollusc pathogenic vibrios is mainly associated with the production of extracellular products. However, siderophore production is a common feature in pathogenic marine bacteria but its role in fitness and virulence of mollusc pathogens remains unknown. We previously found that V. neptunius produces amphibactin, one of the most abundant siderophores in marine microbes. In this work, synthesis of the siderophore piscibactin was identified as the second siderophore produced by V. neptunius. Single and double mutants in biosynthetic genes of each siderophore system, piscibactin and amphibactin, were constructed in V. neptunius and their role in growth ability and virulence was characterized. Although the High Pathogenicity Island encoding piscibactin is a major virulence factor in vibrios pathogenic for fish, the V. neptunius wild type did not cause mortality in turbot. The results showed that amphibactin contributes more than piscibactin to bacterial fitness in vitro. However, infection challenges showed that each siderophore system contributes equally to virulence for molluscs. The V. neptunius strain unable to produce any siderophore was severely impaired to cause vibriosis in clams. Although the inactivation of one of the two siderophore systems (either amphibactin or piscibactin) significantly reduced virulence compared to the wild type strain, the ability to produce both siderophores simultaneously maximised the degree of virulence. Evaluation of the gene expression pattern of each siderophore system showed that they are simultaneously expressed when V. neptunius is cultivated under low iron availability in vitro and ex vivo. Finally, the analysis of the distribution of siderophore systems in genomes of Vibrio spp. pathogenic for molluscs showed that the gene clusters encoding amphibactin and piscibactin are widespread in the Coralliilyticus clade. Thus, siderophore production would constitute a key virulence factor for bivalve molluscs pathogenic vibrios.


Asunto(s)
Bivalvos , Vibrio , Animales , Sideróforos , Vibrio/genética , Virulencia
11.
Microorganisms ; 9(11)2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34835524

RESUMEN

Bismuth is a heavy metal with antibacterial properties that has a long history of medicinal use. The results reported here suggest that bismuth(III) (chelated with deferiprone) could be used in aquaculture systems to treat bacterial disease outbreaks, greatly reducing antibiotic use. We tested bismuth susceptibility in a collection of aquaculture bacterial pathogens. In the presence of bismuth concentrations ranging from 1.3 to 13 µM, most bacteria started showing a drastic decrease in their growth ability, although with high inter- and intraspecific variability. The minimal inhibitory concentrations of bismuth ranged from 13 to more than 780 µM, depending on bacterial species and strain. The results of in vivo assays suggest that low concentrations of bismuth could be especially effective to treat vibriosis caused by Vibrio anguillarum, since bismuth greatly reduced mortality in experimentally infected fish without any observable side effects. A bismuth therapy, alone or combined with other antimicrobials, could contribute to reduce the use of antibiotics in aquaculture.

12.
Antibiotics (Basel) ; 10(4)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917401

RESUMEN

Vibrio neptunius is an important pathogen of bivalve mollusks worldwide. Several metalloproteases have been described as virulence factors in species of Vibrio that are pathogenic to bivalves, but little is known about the contribution of these potential virulence factors to Vibrio neptunius pathogenesis. In silico analysis of the genome of V. neptunius strain PP-145.98 led to the identification of two hitherto uncharacterized chromosomal loci encoding a probable vibriolysin-like metalloprotease and a putative collagenase, which were designated VnpA and ColA, respectively. Single defective mutants of each gene were obtained in V. neptunius PP-145.98, and the phospholipase, esterase and collagenase activities were studied and compared with those of the wild-type strain. The results showed that the single inactivation of vnpA resulted in a 3-fold reduction in phospholipase/esterase activity. Inactivation of colA reduced the collagenase activity by 50%. Finally, infection challenges performed in oyster larvae showed that ΔvnpA and ΔcolA-single mutant strains of V. neptunius-are between 2-3-fold less virulent than the wild-type strain. Thus, the present work demonstrates that the production of both VnpA and ColA is required for the full virulence of the bivalve pathogen V. neptunius.

13.
Microbiol Resour Announc ; 10(17)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33927038

RESUMEN

Vibrio neptunius is a Gram-negative bacterium that has been shown to cause disease in marine bivalve mollusk larvae. Here, we report the draft genome sequences and annotations of five V. neptunius strains isolated from larvae of European oyster (Ostrea edulis) and Manila clam (Ruditapes philippinarum) at hatcheries in Galicia, northwest Spain.

14.
Environ Microbiol ; 22(12): 5467-5482, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33169914

RESUMEN

Amphiphilic siderophores, including amphibactins, are the most abundant siderophores in oceans. Genes putatively encoding the amphibactin system were proposed in some bacteria and homologues of these genes are particularly abundant in multiple bacterial lineages inhabitant of low-iron seawater. However, since no defective mutant strains in any of these genes were studied to date, their role in amphibactin synthesis or uptake was not demonstrated. In this work, an in silico analysis of the genome of the mollusc pathogen Vibrio neptunius leads us to identify a gene cluster (denoted absABDEF) that is predicted to encode an amphibactin-like siderophore and several mutant strains unable to synthesize or use siderophores were constructed. The results showed that genes absABDEF are required for amphibactin synthesis. A comparative chemical analysis of V. neptunius wild type and biosynthesis mutants allowed us to identify a mixture of nine amphibactin forms produced by this bacterium. In addition, the gene abtA is predicted to encode the ferri-amphibactin outer membrane transporter. The prevalence of the amphibactin system in bivalve hemolymph microbiota was also studied. We found that the amphibactin system is widespread in hemolymph microbiota including both commensal and pathogenic bacterial species. Thus, its contribution to bacterial fitness must be more related to environmental persistence than to pathogenicity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bivalvos/microbiología , Microbiota , Sideróforos/biosíntesis , Vibrio/metabolismo , Animales , Proteínas Bacterianas/genética , Genoma Bacteriano/genética , Microbiota/genética , Familia de Multigenes , Mutación , Agua de Mar/microbiología , Sideróforos/genética , Vibrio/genética
15.
J Vis Exp ; (160)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32628159

RESUMEN

In the present work, the synthesis of magnetic nanoparticles, its coating with SiO2, followed by its amine functionalization with (3-aminopropyl)triethoxysilane (APTES) and its conjugation with deferoxamine, a siderophore recognized by Yersinia enterocolitica, using a succinyl moiety as a linker are described. Magnetic nanoparticles (MNP) of magnetite (Fe3O4) were prepared by solvothermal method and coated with SiO2 (MNP@SiO2) using the Stöber process followed by functionalization with APTES (MNP@SiO2@NH2). Then, feroxamine was conjugated with the MNP@SiO2@NH2 by carbodiimide coupling to give MNP@SiO2@NH2@Fa. The morphology and properties of the conjugate and intermediates were examined by eight different methods including powder X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-Ray (EDX) mapping. This exhaustive characterization confirmed the formation of the conjugate. Finally, in order to evaluate the capacity and specificity of the nanoparticles, they were tested in a capture bacteria assay using Yersinia enterocolitica.


Asunto(s)
Deferoxamina/química , Nanopartículas de Magnetita/química , Propilaminas/química , Sideróforos/química , Silanos/química , Dióxido de Silicio/química , Yersinia enterocolitica
16.
Front Microbiol ; 10: 2335, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681201

RESUMEN

Vibrio anguillarum causes a hemorrhagic septicemia that affects cold- and warm-water adapted fish species. The main goal of this work was to determine the temperature-dependent changes in the virulence factors that could explain the virulence properties of V. anguillarum for fish cultivated at different temperatures. We have found that although the optimal growth temperature is around 25°C, the degree of virulence of V. anguillarum RV22 is higher at 15°C. To explain this result, an RNA-Seq analysis was performed to compare the whole transcriptome profile of V. anguillarum RV22 cultured under low-iron availability at either 25 or 15°C, which would mimic the conditions that V. anguillarum finds during colonization of fish cultivated at warm- or cold-water temperatures. The comparative analysis of transcriptomes at high- and low-iron conditions showed profound metabolic adaptations to grow under low iron. These changes were characterized by a down-regulation of the energetic metabolism and the induction of virulence-related factors like biosynthesis of LPS, production of hemolysins and lysozyme, membrane transport, heme uptake, or production of siderophores. However, the expression pattern of virulence factors under iron limitation showed interesting differences at warm and cold temperatures. Chemotaxis, motility, as well as the T6SS1 genes are expressed at higher levels at 25°C than at 15°C. By contrast, hemolysin RTX pore-forming toxin, T6SS2, and the genes associated with exopolysaccharides synthesis were preferentially expressed at 15°C. Notably, at this temperature, the siderophore piscibactin system was strongly up-regulated. In contrast, at 25°C, piscibactin genes were down-regulated and the vanchrobactin siderophore system seems to supply all the necessary iron to the cell. The results showed that V. anguillarum adjusts the expression of virulence factors responding to two environmental signals, iron levels and temperature. Thus, the relative relevance of each virulence factor for each fish species could vary depending on the water temperature. The results give clues about the physiological adaptations that allow V. anguillarum to cause infections in different fishes and could be relevant for vaccine development against fish vibriosis.

17.
Fish Shellfish Immunol ; 94: 723-729, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31580933

RESUMEN

Photobacteriosis caused by Photobacterium damselae subsp. piscicida (Pdp) remains one of the main infectious diseases affecting cultured fish in Mediterranean countries. Diverse vaccine formulations based in the use of inactivated bacterial cells have been used with unsatisfactory results, especially in newly cultured species like sole (Solea senegalensis). In this work, we describe the use of the outer membrane receptor (FrpA) of the siderophore piscibactin produced by Pdp as a novel subunit vaccine against photobacteriosis. FrpA has been cloned and expressed in Escherichia coli under an arabinose-inducible promoter. A recombinant protein (rFrpA) containing the pelB localization signal and a His tag was constructed to obtain a pure native form of the protein from E. coli outer membranes. The immunogenicity of rFrpA, and its protective effect against photobacteriosis, was tested by i.p. injection of 30  µg of the protein, mixed with Freund's adjuvant, in sole fingerlings with two immunizations separated by 30 days. Results showed that using either pure rFrpA or whole cells as immobilized antigens in ELISA assays, rFrpA induces the production of specific antibodies in sole. An experimental infection using fish vaccinated with rFrpA or formalin-killed whole cells of Pdp showed that both groups were protected against Pdp infection at similar levels, with no significant differences, reaching RPS values of 73% and 79%, respectively. Thus, FrpA constitutes a promising antigen candidate for the development of novel more effective vaccines against fish photobacteriosis.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/administración & dosificación , Enfermedades de los Peces/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria , Photobacterium/inmunología , Animales , Peces Planos , Infecciones por Bacterias Gramnegativas/prevención & control , Receptores de Superficie Celular/inmunología , Vacunas de Subunidad/administración & dosificación
18.
ACS Infect Dis ; 5(11): 1936-1951, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31556990

RESUMEN

Amonabactins are a group of four related catecholate siderophores produced by several species of the genus Aeromonas, including A. hydrophila and the fish pathogen A. salmonicida subsp. salmonicida. Although the gene cluster encoding amonabactin biosynthesis also contains a gene that could encode the ferri-siderophore receptor (fstC), to date there is no experimental evidence to explain its role. In this work, we report the identification of the amonabactins' outer membrane receptor and the determination of the minimal structural parts of these siderophores involved in the molecular recognition by their cognate receptor. The four natural amonabactin forms (P750, T789, P693, and T732) and some mono and biscatecholate amonabactin analogues were chemically synthesized, and their siderophore activity on A. salmonicida FstC(+) and FstC(-) strains was evaluated. The results showed that each amonabactin form has quite different growth promotion activity, with P750 and T789 the most active. The outer membrane receptor FstC recognizes more efficiently biscatecholate siderophores in which the length of the linker between the two iron-binding catecholamide units is 15 atoms (P750 and T789) instead of 12 atoms (P693 and T732). Analysis of the siderophore activity of synthetic analogues indicated that the presence of Phe or Trp residues is not required for siderophore recognition. The results together point toward evidence that the amonabactin receptor FstC admits a high degree of ligand plasticity. We also showed that FstC is present in most Aeromonas species, including relevant human and animal pathogens as A. hydrophila. From the results obtained, we concluded that the ferri-amonabactin uptake pathway involving the outer membrane transporter FstC possesses a considerable functional plasticity that could be exploited for delivery of antimicrobial compounds into the cell. This would allow the use of the siderophore-based iron uptake mechanisms to combat infections caused by species of the genus Aeromonas.


Asunto(s)
Aeromonas salmonicida/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Sideróforos/metabolismo , Sideróforos/farmacología , Aeromonas salmonicida/química , Aeromonas salmonicida/efectos de los fármacos , Aeromonas salmonicida/genética , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Hierro/metabolismo , Ligandos , Filogenia , Sideróforos/química , Relación Estructura-Actividad
19.
Microorganisms ; 7(9)2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31484388

RESUMEN

Vibrio ordalii is the causative agent of vibriosis, mainly in salmonid fishes, and its virulence mechanisms are still not completely understood. In previous works we demonstrated that V. ordalii possess several iron uptake mechanisms based on heme utilization and siderophore production. The aim of the present work was to confirm the production and utilization of piscibactin as a siderophore by V. ordalii. Using genetic analysis, identification by peptide mass fingerprinting (PMF) of iron-regulated membrane proteins and chemical identification by LC-HRMS, we were able to clearly demonstrate that V. ordalii produces piscibactin under iron limitation. The synthesis and transport of this siderophore is encoded by a chromosomal gene cluster homologous to another one described in V. anguillarum, which also encodes the synthesis of piscibactin. Using ß-galactosidase assays we were able to show that two potential promoters regulated by iron control the transcription of this gene cluster in V. ordalii. Moreover, biosynthetic and transport proteins corresponding to piscibactin synthesis and uptake could be identified in membrane fractions of V. ordalii cells grown under iron limitation. The synthesis of piscibactin was previously reported in other fish pathogens like Photobacterium damselae subsp. piscicida and V. anguillarum, which highlights the importance of this siderophore as a key virulence factor in Vibrionaceae bacteria infecting poikilothermic animals.

20.
RSC Adv ; 9(24): 13533-13542, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35519600

RESUMEN

This work reports the preparation of a conjugate between amino-functionalized silica magnetite and the siderophore feroxamine. The morphology and properties of the conjugate and intermediate magnetic nanoparticles (MNPs) were examined by powder X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), magnetization studies, zeta potential measurements, Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray (EDX) mapping. Furthermore, this study investigated the interaction between the functionalized magnetic NPs and Yersinia enterocolitica wild type (WC-A) using Scanning Electron Microscopy (SEM) and TEM images. In addition, the interaction between MNPs and a Y. enterocolitica mutant strain lacking feroxamine receptor FoxA, was also used to study the binding specificity. The results showed that the capture and isolation of Y. enterocolitica by the MNPs took place in all cases. Moreover, the specific interaction between the MNP conjugate and bacteria did not increase after blocking the free amine groups with t-butoxycarbonyl (Boc) and carboxylic acid (COOH) functional groups. Electrostatic surface interactions instead of molecular recognition between MNP conjugate and feroxamine receptor seem to rule the attachment of bacteria to the conjugate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...