Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Biol ; 462(2): 208-222, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32194035

RESUMEN

Phosphatidylinositol 4 phosphate (PI4P) and phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] are enriched on the inner leaflet of the plasma membrane and proposed to be key determinants of its function. PI4P is also the biochemical precursor for the synthesis of PI(4,5)P2 but can itself also bind to and regulate protein function. However, the independent function of PI4P at the plasma membrane in supporting cell function in metazoans during development in vivo remains unclear. We find that conserved components of a multi-protein complex composed of phosphatidylinositol 4-kinase IIIα (PI4KIIIα), TTC7 and Efr3 is required for normal vein patterning and wing development. Depletion of each of these three components of the PI4KIIIα complex in developing wing cells results in altered wing morphology. These effects are associated with an increase in apoptosis and can be rescued by expression of an inhibitor of Drosophila caspase. We find that in contrast to previous reports, PI4KIIIα depletion does not alter key outputs of hedgehog signalling in developing wing discs. Depletion of PI4KIIIα results in reduced PI4P levels at the plasma membrane of developing wing disc cells while levels of PI(4,5)P2, the downstream metabolite of PI4P, are not altered. Thus, PI4P itself generated by the activity of the PI4KIIIα complex plays an essential role in supporting cell viability in the developing Drosophila wing disc.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Antígenos de Histocompatibilidad Menor/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Alas de Animales/embriología , Animales , Membrana Celular/enzimología , Membrana Celular/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/metabolismo , Proteínas Hedgehog/metabolismo , Discos Imaginales/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transporte de Proteínas , Transducción de Señal
2.
J Cell Sci ; 131(15)2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29980590

RESUMEN

The activation of phospholipase C (PLC) is a conserved mechanism of receptor-activated cell signaling at the plasma membrane. PLC hydrolyzes the minor membrane lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], and continued signaling requires the resynthesis and availability of PI(4,5)P2 at the plasma membrane. PI(4,5)P2 is synthesized by the phosphorylation of phosphatidylinositol 4-phosphate (PI4P). Thus, a continuous supply of PI4P is essential to support ongoing PLC signaling. While the enzyme PI4KA has been identified as performing this function in cultured mammalian cells, its function in the context of an in vivo physiological model has not been established. In this study, we show that, in Drosophila photoreceptors, PI4KIIIα activity is required to support signaling during G-protein-coupled PLC activation. Depletion of PI4KIIIα results in impaired electrical responses to light, and reduced plasma membrane levels of PI4P and PI(4,5)P2 Depletion of the conserved proteins Efr3 and TTC7 [also known as StmA and L(2)k14710, respectively, in flies], which assemble PI4KIIIα at the plasma membrane, also results in an impaired light response and reduced plasma membrane PI4P and PI(4,5)P2 levels. Thus, PI4KIIIα activity at the plasma membrane generates PI4P and supports PI(4,5)P2 levels during receptor activated PLC signaling.


Asunto(s)
Proteínas de Drosophila/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolipasas de Tipo C/metabolismo , Animales , Membrana Celular/metabolismo , Drosophila , Retículo Endoplásmico/metabolismo , Femenino , Masculino , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositoles/metabolismo , Transducción de Señal
3.
Elife ; 52016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27848911

RESUMEN

During illumination, the light-sensitive plasma membrane (rhabdomere) of Drosophila photoreceptors undergoes turnover with consequent changes in size and composition. However, the mechanism by which illumination is coupled to rhabdomere turnover remains unclear. We find that photoreceptors contain a light-dependent phospholipase D (PLD) activity. During illumination, loss of PLD resulted in an enhanced reduction in rhabdomere size, accumulation of Rab7 positive, rhodopsin1-containing vesicles (RLVs) in the cell body and reduced rhodopsin protein. These phenotypes were associated with reduced levels of phosphatidic acid, the product of PLD activity and were rescued by reconstitution with catalytically active PLD. In wild-type photoreceptors, during illumination, enhanced PLD activity was sufficient to clear RLVs from the cell body by a process dependent on Arf1-GTP levels and retromer complex function. Thus, during illumination, PLD activity couples endocytosis of RLVs with their recycling to the plasma membrane thus maintaining plasma membrane size and composition.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Endocitosis/efectos de la radiación , Fosfolipasa D/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Animales , Membrana Celular/efectos de la radiación , Membrana Celular/ultraestructura , Vesículas Citoplasmáticas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/efectos de la radiación , Expresión Génica , Prueba de Complementación Genética , Guanosina Trifosfato/metabolismo , Luz , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/genética , Estimulación Luminosa , Células Fotorreceptoras de Invertebrados/efectos de la radiación , Células Fotorreceptoras de Invertebrados/ultraestructura , Rodopsina/genética , Rodopsina/metabolismo , Visión Ocular/fisiología , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
4.
Genetics ; 203(1): 369-85, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26920756

RESUMEN

The functional requirement of adapter protein 2 (AP2) complex in synaptic membrane retrieval by clathrin-mediated endocytosis is not fully understood. Here we isolated and functionally characterized a mutation that dramatically altered synaptic development. Based on the aberrant neuromuscular junction (NMJ) synapse, we named this mutation angur (a Hindi word meaning "grapes"). Loss-of-function alleles of angur show more than twofold overgrowth in bouton numbers and a dramatic decrease in bouton size. We mapped the angur mutation to σ2-adaptin, the smallest subunit of the AP2 complex. Reducing the neuronal level of any of the subunits of the AP2 complex or disrupting AP2 complex assembly in neurons phenocopied the σ2-adaptin mutation. Genetic perturbation of σ2-adaptin in neurons leads to a reversible temperature-sensitive paralysis at 38°. Electrophysiological analysis of the mutants revealed reduced evoked junction potentials and quantal content. Interestingly, high-frequency nerve stimulation caused prolonged synaptic fatigue at the NMJs. The synaptic levels of subunits of the AP2 complex and clathrin, but not other endocytic proteins, were reduced in the mutants. Moreover, bone morphogenetic protein (BMP)/transforming growth factor ß (TGFß) signaling was altered in these mutants and was restored by normalizing σ2-adaptin in neurons. Thus, our data suggest that (1) while σ2-adaptin facilitates synaptic vesicle (SV) recycling for basal synaptic transmission, its activity is also required for regenerating SVs during high-frequency nerve stimulation, and (2) σ2-adaptin regulates NMJ morphology by attenuating TGFß signaling.


Asunto(s)
Subunidades sigma de Complejo de Proteína Adaptadora/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Unión Neuromuscular/metabolismo , Transmisión Sináptica , Subunidades sigma de Complejo de Proteína Adaptadora/genética , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Clatrina/metabolismo , Drosophila/genética , Drosophila/fisiología , Proteínas de Drosophila/genética , Potenciales Evocados , Mutación , Unión Neuromuscular/fisiología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
5.
Biochim Biophys Acta ; 1851(6): 770-84, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25449646

RESUMEN

Phosphoinositides (PtdInsPs) are lipids that mediate a range of conserved cellular processes in eukaryotes. These include the transduction of ligand binding to cell surface receptors, vesicular transport and cytoskeletal function. The nature and functions of PtdInsPs were initially elucidated through biochemical experiments in mammalian cells. However, over the years, genetic and cell biological analysis in a range of model organisms including S. cerevisiae, D. melanogaster and C. elegans have contributed to an understanding of the involvement of PtdInsPs in these cellular events. The fruit fly Drosophila is an excellent genetic model for the analysis of cell and developmental biology as well as physiological processes, particularly analysis of the complex relationship between the cell types of a metazoan in mediating animal physiology. PtdInsP signalling pathways are underpinned by enzymes that synthesise and degrade these molecules and also by proteins that bind to these lipids in cells. In this review we provide an overview of the current understanding of PtdInsP signalling in Drosophila. We provide a comparative genomic analysis of the PtdInsP signalling toolkit between Drosophila and mammalian systems. We also review some areas of cell and developmental biology where analysis in Drosophila might provide insights into the role of this lipid-signalling pathway in metazoan biology. This article is part of a Special Issue entitled Phosphoinositides.


Asunto(s)
CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fosfoinositido Fosfolipasa C/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Isoenzimas/genética , Isoenzimas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfoinositido Fosfolipasa C/genética , Proteínas de Transferencia de Fosfolípidos/genética , Receptores de Superficie Celular/genética , Transducción de Señal , Especificidad de la Especie , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...