Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(12): e2316491121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466836

RESUMEN

Replication fork reversal is a fundamental process required for resolution of encounters with DNA damage. A key step in the stabilization and eventual resolution of reversed forks is formation of RAD51 nucleoprotein filaments on exposed single strand DNA (ssDNA). To avoid genome instability, RAD51 filaments are tightly controlled by a variety of positive and negative regulators. RADX (RPA-related RAD51-antagonist on the X chromosome) is a recently discovered negative regulator that binds tightly to ssDNA, directly interacts with RAD51, and regulates replication fork reversal and stabilization in a context-dependent manner. Here, we present a structure-based investigation of RADX's mechanism of action. Mass photometry experiments showed that RADX forms multiple oligomeric states in a concentration-dependent manner, with a predominance of trimers in the presence of ssDNA. The structure of RADX, which has no structurally characterized orthologs, was determined ab initio by cryo-electron microscopy (cryo-EM) from maps in the 2 to 4 Å range. The structure reveals the molecular basis for RADX oligomerization and the coupled multi-valent binding of ssDNA binding. The interaction of RADX with RAD51 filaments was imaged by negative stain EM, which showed a RADX oligomer at the end of filaments. Based on these results, we propose a model in which RADX functions by capping and restricting the end of RAD51 filaments.


Asunto(s)
Proteínas de Unión al ADN , Recombinasa Rad51 , Proteínas de Unión al ADN/metabolismo , Recombinasa Rad51/metabolismo , Microscopía por Crioelectrón , Nucleoproteínas/metabolismo , ADN de Cadena Simple , Replicación del ADN
2.
bioRxiv ; 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37786681

RESUMEN

Replication fork reversal is a fundamental process required for resolution of encounters with DNA damage. A key step in the stabilization and eventual resolution of reversed forks is formation of RAD51 nucleoprotein filaments on exposed ssDNA. To avoid genome instability, RAD51 filaments are tightly controlled by a variety of positive and negative regulators. RADX is a recently discovered negative regulator that binds tightly to ssDNA, directly interacts with RAD51, and regulates replication fork reversal and stabilization in a context-dependent manner. Here we present a structure-based investigation of RADX's mechanism of action. Mass photometry experiments showed that RADX forms multiple oligomeric states in a concentration dependent manner, with a predominance of trimers in the presence of ssDNA. The structure of RADX, which has no structurally characterized orthologs, was determined ab initio by cryo-electron microscopy (EM) from maps in the 2-3 Å range. The structure reveals the molecular basis for RADX oligomerization and binding of ssDNA binding. The binding of RADX to RAD51 filaments was imaged by negative stain EM, which showed a RADX oligomer at the end of filaments. Based on these results, we propose a model in which RADX functions by capping and restricting the growing end of RAD51 filaments.

3.
J Biol Chem ; 299(11): 105292, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37769710

RESUMEN

S100 proteins are a subfamily of EF-hand calcium-binding proteins found primarily in vertebrate animals. They are distinguished by binding of transition metals and functioning in both the intracellular and extracellular milieu. S100A7 functions in the protection of the skin and mucous membranes and is a biomarker in inflammatory skin disease. A recent study of Neisseria gonorrhoeae infection revealed that human but not murine S100A7 could be used to evade host nutritional immunity. To understand the molecular basis for this difference, we carried out a comparative analysis of the physical and structural properties of human and murine S100A7. The X-ray crystal structure of Ca2+-loaded mouse S100A7 (mS100A7) was determined to 1.69 Å resolution, and Ca2+-induced conformational changes were assessed by NMR. Unlike human S100A7 (hS100A7), which exhibits conformational changes in response to binding of Ca2+, no significant changes in mS100A7 were detected. Dynamic light scattering, circular dichroism, and a competition chelator assay were used to compare the Zn2+ affinity and the effects of ion binding on mS100A7 versus hS100A7. Alignment of their sequences revealed a substantial difference in the C-terminal region, which is an important mediator of protein-protein interactions, suggesting a rationale for the specificity of N. gonorrhoeae for hS100A7. These data, along with more detailed analysis of S100A7 sequence conservation across different species, support the proposal that, although hS100A7 is highly conserved in many mammals, the murine protein is a distinct ortholog. Our results highlight the potential limitations of using mouse models for studying bacterial infections in humans.


Asunto(s)
Dermatitis , Gonorrea , Animales , Humanos , Ratones , Proteínas de Unión al Calcio/metabolismo , Mamíferos/metabolismo , Proteína A7 de Unión a Calcio de la Familia S100 , Proteínas S100/genética , Proteínas S100/metabolismo , Zinc/metabolismo
4.
J Mol Biol ; 435(19): 168236, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37572935

RESUMEN

RAD51 forms nucleoprotein filaments to promote homologous recombination, replication fork reversal, and fork protection. Numerous factors regulate the stability of these filaments and improper regulation leads to genomic instability and ultimately disease including cancer. RADX is a single stranded DNA binding protein that modulates RAD51 filament stability. Here, we utilize a CRISPR-dependent base editing screen to tile mutations across RADX to delineate motifs required for RADX function. We identified separation of function mutants of RADX that bind DNA and RAD51 but have a reduced ability to stimulate its ATP hydrolysis activity. Cells expressing these RADX mutants accumulate RAD51 on chromatin, exhibit replication defects, have reduced growth, accumulate DNA damage, and are hypersensitive to DNA damage and replication stress. These results indicate that RADX must promote RAD51 ATP turnover to regulate RAD51 and genome stability during DNA replication.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición de ARN , Recombinasa Rad51 , Humanos , Adenosina Trifosfato/metabolismo , Replicación del ADN/genética , ADN de Cadena Simple , Edición Génica , Inestabilidad Genómica/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
5.
Mol Cell ; 81(5): 1074-1083.e5, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33453169

RESUMEN

The RAD51 recombinase forms nucleoprotein filaments to promote double-strand break repair, replication fork reversal, and fork stabilization. The stability of these filaments is highly regulated, as both too little and too much RAD51 activity can cause genome instability. RADX is a single-strand DNA (ssDNA) binding protein that regulates DNA replication. Here, we define its mechanism of action. We find that RADX inhibits RAD51 strand exchange and D-loop formation activities. RADX directly and selectively interacts with ATP-bound RAD51, stimulates ATP hydrolysis, and destabilizes RAD51 nucleofilaments. The RADX interaction with RAD51, in addition to its ssDNA binding capability, is required to maintain replication fork elongation rates and fork stability. Furthermore, BRCA2 can overcome the RADX-dependent RAD51 inhibition. Thus, RADX functions in opposition to BRCA2 in regulating RAD51 nucleofilament stability to ensure the right level of RAD51 function during DNA replication.


Asunto(s)
Proteína BRCA2/genética , Replicación del ADN , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ARN/genética , Recombinasa Rad51/genética , Adenosina Trifosfato/metabolismo , Proteína BRCA2/metabolismo , Línea Celular Tumoral , ADN/genética , ADN/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Hidrólisis , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de Unión al ARN/metabolismo , Recombinasa Rad51/metabolismo , Transducción de Señal , Imagen Individual de Molécula , Proteína Fluorescente Roja
6.
Biochemistry ; 56(33): 4346-4359, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28738155

RESUMEN

Aromatic interactions are an important force in protein folding as they combine the stability of a hydrophobic interaction with the selectivity of a hydrogen bond. Much of our understanding of aromatic interactions comes from "bioinformatics" based analyses of protein structures and from the contribution of these interactions to stabilizing secondary structure motifs in model peptides. In this study, the structural consequences of aromatic interactions on protein folding have been explored in engineered mutants of the molten globule protein apo-cytochrome b5. Structural changes from disorder to order due to aromatic interactions in two variants of the protein, viz., WF-cytb5 and FF-cytb5, result in significant long-range secondary and tertiary structure. The results show that 54 and 52% of the residues in WF-cytb5 and FF-cytb5, respectively, occupy ordered regions versus 26% in apo-cytochrome b5. The interactions between the aromatic groups are offset-stacked and edge-to-face for the Trp-Phe and Phe-Phe mutants, respectively. Urea denaturation studies indicate that both mutants have a Cm higher than that of apo-cytochrome b5 and are more stable to chaotropic agents than apo-cytochrome b5. The introduction of these aromatic residues also results in "trimer" interactions with existing aromatic groups, reaffirming the selectivity of the aromatic interactions. These studies provide insights into the aromatic interactions that drive disorder-to-order transitions in intrinsically disordered regions of proteins and will aid in de novo protein design beyond small peptide scaffolds.


Asunto(s)
Sustitución de Aminoácidos , Citocromos b5/química , Proteínas Intrínsecamente Desordenadas/química , Pliegue de Proteína , Animales , Citocromos b5/genética , Proteínas Intrínsecamente Desordenadas/genética , Mutación Missense , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA