Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 10: 950414, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060799

RESUMEN

Atonal Homolog 8 (Atoh8) belongs to a large superfamily of transcriptional regulators called basic helix-loop-helix (bHLH) transcription factors. Atoh8 (murine homolog "Math6") has been shown to be involved in organogenesis during murine embryonic development. We have previously identified the expression of Atoh8 during skeletal myogenesis in chicken where we described its involvement in hypaxial myotome formation suggesting a regulatory role of Atoh8 in skeletal muscle development. Within the current study, we analyzed the effect of the loss of function of Atoh8 in murine primary myoblasts and during differentiation of pluripotent stem cells into myotubes, and the effect of its gain of function in C2C12 cells. Based on the observed results, we conclude that Atoh8 regulates myoblast proliferation via modulating myostatin signaling. Further, our data revealed a reduced muscle mass, strength and fiber size with significant changes to the muscle fiber type suggesting atrophy in skeletal muscle of Atoh8 mutants. We further report that Atoh8 knockout mice suffer from a condition similar to ambient hypoxia which may be the primary cause of the phenotype. Altogether, this study shows the significance of Atoh8 not only in myogenesis but also in the maintenance of skeletal muscle.

2.
Histochem Cell Biol ; 145(1): 5-16, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26496921

RESUMEN

ATOH8 is a bHLH transcription factor playing roles in a variety of developmental processes such as neurogenesis, differentiation of pancreatic precursor cells, development of kidney and muscle, and differentiation of endothelial cells. PPP3CB belongs to the catalytic subunit of the serine/threonine phosphatase, calcineurin, which can dephosphorylate its substrate proteins to regulate their physiological activities. In our study, we demonstrated that ATOH8 interacts with PPP3CB in vitro with different approaches. We show that the conserved catalytic domain of PPP3CB interacts with both the N-terminus and the bHLH domain of ATOH8. Although the interaction domain of PPP3CB is conserved among all isoforms of calcineurin A, ATOH8 selectively interacts with PPP3CB instead of PPP3CA, probably due to the unique proline-rich region present in the N-terminus of PPP3CB, which controls the specificity of its interaction partners. Furthermore, we show that inhibition of the interaction with calcineurin inhibitor, cyclosporin A (CsA), leads to the retention of ATOH8 to the cytoplasm, suggesting that the interaction renders nuclear localization of ATOH8 which may be critical to control its activity as transcription factor.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Inhibidores de la Calcineurina/química , Calcineurina/química , Ciclosporina/química , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células COS , Calcineurina/genética , Señalización del Calcio/genética , Dominio Catalítico/genética , Dominio Catalítico/fisiología , Línea Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Ratones , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
3.
Histochem Cell Biol ; 143(6): 575-82, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25578518

RESUMEN

The basic helix-loop-helix transcription factor Math6 was shown to have important regulatory functions during many developmental events. However, a systematic description of Math6 expression during mouse embryonic development is up to now still lacking. We carried out this study to show Math6 expression at different stages of mouse embryonic development aiming to provide a wide insight into the regulatory functions during the mouse organogenesis. Using immunohistochemistry, we could show that Math6 expression is activated in the inner cell mass at the blastocyst stage and in the neural tube as well as somatic and splanchnic mesoderm at stage E8.5. At stages E8.5 and E10.5, Math6 transcripts were detected in the myotome, neural tube, pharyngeal arches, foregut and heart. At stages E11.5 and E12.5, Math6 transcripts were accumulated in the developing brain, heart, limb buds and liver. The heterozygous transgenic mouse embryos carrying EGFP-Cre under the Math6 promoter were used to analyze Math6 expression at later stages by means of immunohistochemistry against EGFP protein. EGFP was observed in the neural tube, heart, lung, skeletal muscle, skin, cartilage, trachea and aorta. We have observed Math6 expression in various organs at early and late stages of mouse development, which illustrates the involvement of Math6 in multiple developmental events.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Desarrollo Embrionario/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/análisis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Cultivadas , Perfilación de la Expresión Génica , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , ARN Mensajero/análisis , ARN Mensajero/genética
4.
Histochem Cell Biol ; 143(5): 443-52, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25514850

RESUMEN

Regenerating muscle fibers emerge from quiescent satellite cells, which differentiate into mature multinuclear myofibers upon activation. It has recently been found that ATOH8, a bHLH transcription factor, is regulated during myogenic differentiation. In this study, expression and localization of ATOH8, the other well-described regeneration markers, vimentin, nestin and neonatal myosin, and the satellite cell marker Pax7 were analyzed on protein level in human myopathy samples by immunofluorescence studies. On mRNA level, expression levels of ATOH8 and vimentin were studied by quantitative real-time PCR. ATOH8 is expressed in activated satellite cells and proliferating myoblasts of human skeletal muscle tissue. Quantitative analyses of ATOH8+, Pax7+, vimentin+, nestin+ and neonatal myosin+ muscle fibers showed the highest amount of regenerating muscle fibers in inflammatory myopathies, followed by muscular dystrophy. The relative co-expression of ATOH8 with the above-mentioned markers did not vary among the disorders. These results show that the novel regeneration marker ATOH8 contributes to muscle cell differentiation in healthy and diseased human muscle tissue.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proliferación Celular , Fibras Musculares Esqueléticas/metabolismo , Enfermedades Musculares/metabolismo , Mioblastos Esqueléticos/metabolismo , Regeneración , Adulto , Anciano , Anciano de 80 o más Años , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Estudios de Casos y Controles , Diferenciación Celular , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Masculino , Persona de Mediana Edad , Fibras Musculares Esqueléticas/patología , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Enfermedades Musculares/fisiopatología , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofias Musculares/fisiopatología , Mioblastos Esqueléticos/patología , Miosinas/metabolismo , Miositis por Cuerpos de Inclusión/metabolismo , Miositis por Cuerpos de Inclusión/patología , Miositis por Cuerpos de Inclusión/fisiopatología , Nestina/metabolismo , Factor de Transcripción PAX7/metabolismo , Polimiositis/metabolismo , Polimiositis/patología , Polimiositis/fisiopatología , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/patología , Transducción de Señal , Vimentina/metabolismo
5.
PLoS One ; 9(3): e92679, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24671096

RESUMEN

The embryonic origin of the dermis in vertebrates can be traced back to the dermomyotome of the somites, the lateral plate mesoderm and the neural crest. The dermal precursors directly overlying the neural tube display a unique dense arrangement and are the first to induce skin appendage formation in vertebrate embryos. These dermal precursor cells have been shown to derive from the dorsomedial lip of the dermomyotome (DML). Based on its expression pattern in the DML, Wnt11 is a candidate regulator of dorsal dermis formation. Using EGFP-based cell labelling and time-lapse imaging, we show that the Wnt11 expressing DML is the source of the dense dorsal dermis. Loss-of-function studies in chicken embryos show that Wnt11 is indeed essential for the formation of dense dermis competent to support cutaneous appendage formation. Our findings show that dermogenic progenitors cannot leave the DML to form dense dorsal dermis following Wnt11 silencing. No alterations were noticeable in the patterning or in the epithelial state of the dermomyotome including the DML. Furthermore, we show that Wnt11 expression is regulated in a manner similar to the previously described early dermal marker cDermo-1. The analysis of Wnt11 mutant mice exhibits an underdeveloped dorsal dermis and strongly supports our gene silencing data in chicken embryos. We conclude that Wnt11 is required for dense dermis and subsequent cutaneous appendage formation, by influencing the cell fate decision of the cells in the DML.


Asunto(s)
Movimiento Celular , Pollos/metabolismo , Dermis/citología , Dermis/embriología , Células Madre/citología , Proteínas Wnt/metabolismo , Animales , Biomarcadores/metabolismo , Proteína Morfogenética Ósea 2/metabolismo , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Folículo Piloso/citología , Ratones Noqueados , Interferencia de ARN , Transducción de Señal , Células Madre/metabolismo
6.
Cell Mol Life Sci ; 71(9): 1723-40, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23982753

RESUMEN

Cerebellar Purkinje cells (PC) physiologically reveal an age-dependent expression of progesterone with high endogenous concentrations during the neonatal period. Even if progesterone has been previously shown to induce spinogenesis, dendritogenesis and synaptogenesis in immature PC, data about the effects of progesterone on mature PC are missing, even though they could be of significant therapeutic interest. The current study demonstrates for the first time a progesterone effect, depending on the developmental age of PC. Comparable with the physiological course of the progesterone concentration, experimental treatment with progesterone for 24 h achieves the highest effects on the dendritic tree during the early neonate, inducing an highly significant increase in dendritic length, spine number and spine area, while spine density in mature PC could not be further stimulated by progesterone incubation. Observed progesterone effects are certainly mediated by classical progesterone receptors, as spine area and number were comparable to controls when progesterone incubation was combined with mifepristone (incubation for 24 h), an antagonist of progesterone receptors A and B (PR-A/PR-B). In contrast, an increase in the spine number and area of both immature and mature PC was detected when slice cultures were incubated with mifepristone for more than 72 h (mifepristone long-time incubation, MLTI). By including time-lapse microscopy, electron microscopic techniques, PCR, western blot, and MALDI IMS receptor analysis, as well as specific antagonists like trilostane and AG 205, we were able to detect the underlying mechanism of this diverging mifepristone effect. Thus, our results provide new insights into the function and signaling mechanisms of the recently described progesterone receptor membrane component 1 (PGRMC1) in PC. It is highly suitable that progesterone does not just induce effects by the well-known genomic mechanisms of the classical progesterone receptors but also acts through PGRMC1 mediated non-genomic mechanisms. Thus, our results provide first proofs for a previously discussed progesterone-dependent induction of neurosteroidogenesis in PC by interaction with PGRMC1. But while genomic progesterone effects mediated through classical PR-A and PR-B seem to be restricted to the neonatal period of PC, PGRMC1 also transmits signals by non-genomic mechanisms like regulation of the neurosteroidogenesis in mature PC. Thus, PGRMC1 might be an interesting target for future clinical studies and therapeutic interventions.


Asunto(s)
Espinas Dendríticas/efectos de los fármacos , Antagonistas de Hormonas/farmacología , Proteínas de la Membrana/metabolismo , Mifepristona/farmacología , Células de Purkinje/efectos de los fármacos , Receptores de Progesterona/metabolismo , Animales , Células Cultivadas , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Femenino , Masculino , Proteínas de la Membrana/genética , Progesterona/farmacología , Progesterona Reductasa/metabolismo , Células de Purkinje/citología , Células de Purkinje/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores de Progesterona/genética
7.
Histochem Cell Biol ; 141(3): 289-300, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24186058

RESUMEN

The embryonic muscles of the axial skeleton and limbs take their origin from the dermomyotomes of the somites. During embryonic myogenesis, muscle precursors delaminate from the dermomyotome giving rise to the hypaxial and epaxial myotome. Mutant studies for myogenic regulatory factors have shown that the development of the hypaxial myotome differs from the formation of the epaxial myotome and that the development of the hypaxial myotome depends on the latter within the trunk region. The transcriptional networks that regulate the transition of proliferative dermomyotomal cells into the predominantly post-mitotic hypaxial myotome, as well as the eventual patterning of the myotome, are not fully understood. Similar transitions occurring during the development of the neural system have been shown to be controlled by the Atonal family of helix-loop-helix transcription factors. Here, we demonstrate that ATOH8, a member of the Atonal family, is expressed in a subset of embryonic muscle cells in the dermomyotome and myotome. Using the RNAi approach, we show that loss of ATOH8 in the lateral somites at the trunk level results in a blockage of differentiation and thus causes cells to be maintained in a predetermined state. Furthermore, we show that ATOH8 is also expressed in cultured C2C12 mouse myoblasts and becomes dramatically downregulated during their differentiation. We propose that ATOH8 plays a role during the transition of myoblasts from the proliferative phase to the differentiation phase and in the regulation of myogenesis in the hypaxial myotome of the trunk.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Tipificación del Cuerpo/genética , Desarrollo de Músculos/genética , Músculo Esquelético/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Diferenciación Celular/genética , Línea Celular , Linaje de la Célula , Embrión de Pollo , Regulación hacia Abajo , Regulación del Desarrollo de la Expresión Génica , Ratones , Mioblastos/citología , Factor 5 Regulador Miogénico/biosíntesis , Miogenina/biosíntesis , Factor de Transcripción PAX7/biosíntesis , Interferencia de ARN , ARN Interferente Pequeño , Somitos/fisiología
8.
Endocrinology ; 154(10): 3784-95, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23913445

RESUMEN

In the last two decades, sensory neurons and Schwann cells in the dorsal root ganglia (DRG) were shown to express the rate-limiting enzyme of the steroid synthesis, cytochrome P450 side-chain cleavage enzyme (P450scc), as well as the key enzyme of progesterone synthesis, 3ß-hydroxysteroid dehydrogenase (3ß-HSD). Thus, it was well justified to consider that DRG neurons similarly are able to synthesize progesterone de novo from cholesterol. Because direct progesterone effects on axonal outgrowth in peripheral neurons have not been investigated up to now, the present study provides the first insights into the impact of exogenous progesterone on axonal outgrowth in DRG neurons. Our studies including microinjection and laser scanning microscopy demonstrate morphological changes especially in the neuronal growth cones after progesterone treatment. Furthermore, we were able to detect a distinctly enhanced motility only a few minutes after the start of progesterone treatment using time-lapse imaging. Investigation of the cytoskeletal distribution in the neuronal growth cone before, during, and after progesterone incubation revealed a rapid reorganization of actin filaments. To get a closer idea of the underlying receptor mechanisms, we further studied the expression of progesterone receptors in DRG neurons using RT-PCR and immunohistochemistry. Thus, we could demonstrate for the first time that classical progesterone receptor (PR) A and B and the recently described progesterone receptor membrane component 1 (PGRMC1) are expressed in DRG neurons. Antagonism of the classical progesterone receptors by mifepristone revealed that the observed progesterone effects are transmitted through PR-A and PR-B.


Asunto(s)
Proteínas Aviares/metabolismo , Ganglios Espinales/metabolismo , Conos de Crecimiento/metabolismo , Proteínas de la Membrana/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Animales , Proteínas Aviares/antagonistas & inhibidores , Proteínas Aviares/genética , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/ultraestructura , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/ultraestructura , Antagonistas de Hormonas/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/genética , Microscopía Confocal , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Progesterona/química , ARN Mensajero/metabolismo , Receptores de Progesterona/antagonistas & inhibidores , Receptores de Progesterona/genética , Proteínas Recombinantes de Fusión/metabolismo , Imagen de Lapso de Tiempo , Proteína Fluorescente Roja
9.
PLoS One ; 6(8): e23005, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21857980

RESUMEN

ATOH8 is a bHLH domain transcription factor implicated in the development of the nervous system, kidney, pancreas, retina and muscle. In the present study, we collected sequence of ATOH8 orthologues from 18 vertebrate species and 24 invertebrate species. The reconstruction of ATOH8 phylogeny and sequence analysis showed that this gene underwent notable divergences during evolution. For those vertebrate species investigated, we analyzed the gene structure and regulatory elements of ATOH8. We found that the bHLH domain of vertebrate ATOH8 was highly conserved. Mammals retained some specific amino acids in contrast to the non-mammalian orthologues. Mammals also developed another potential isoform, verified by a human expressed sequence tag (EST). Comparative genomic analyses of the regulatory elements revealed a replacement of the ancestral TATA box by CpG-islands in the eutherian mammals and an evolutionary tendency for TATA box reduction in vertebrates in general. We furthermore identified the region of the effective promoter of human ATOH8 which could drive the expression of EGFP reporter in the chicken embryo. In the opossum, both the coding region and regulatory elements of ATOH8 have some special features, such as the unique extended C-terminus encoded by the third exon and absence of both CpG islands and TATA elements in the regulatory region. Our gene mapping data showed that in human, ATOH8 was hosted in one chromosome which is a fusion product of two orthologous chromosomes in non-human primates. This unique chromosomal environment of human ATOH8 probably subjects its expression to the regulation at chromosomal level. We deduce that the great interspecific differences found in both ATOH8 gene sequence and its regulatory elements might be significant for the fine regulation of its spatiotemporal expression and roles of ATOH8, thus orchestrating its function in different tissues and organisms.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Evolución Molecular , Variación Genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/clasificación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Teorema de Bayes , Gatos , Bovinos , Embrión de Pollo , Mapeo Cromosómico , Cromosomas Humanos Par 2/genética , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Hibridación Fluorescente in Situ , Invertebrados/genética , Ratones , Datos de Secuencia Molecular , Filogenia , Primates , Ratas , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Vertebrados/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...