Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35628557

RESUMEN

Glial cells participate actively in the early cognitive decline in Alzheimer's disease (AD) pathology. In fact, recent studies have found molecular and functional abnormalities in astrocytes and microglia in both animal models and brains of patients suffering from this pathology. In this regard, reactive gliosis intimately associated with amyloid plaques has become a pathological hallmark of AD. A recent study from our laboratory reports that astrocyte reactivity is caused by a direct interaction between amyloid beta (Aß) oligomers and integrin ß1. Here, we have generated four recombinant peptides including the extracellular domain of integrin ß1, and evaluated their capacity both to bind in vitro to Aß oligomers and to prevent in vivo Aß oligomer-induced gliosis and endoplasmic reticulum stress. We have identified the minimal region of integrin ß1 that binds to Aß oligomers. This region is called signal peptide and corresponds to the first 20 amino acids of the integrin ß1 N-terminal domain. This recombinant integrin ß1 signal peptide prevented Aß oligomer-induced ROS generation in primary astrocyte cultures. Furthermore, we carried out intrahippocampal injection in adult mice of recombinant integrin ß1 signal peptide combined with or without Aß oligomers and we evaluated by immunohistochemistry both astrogliosis and microgliosis as well as endoplasmic reticulum stress. The results show that recombinant integrin ß1 signal peptide precluded both astrogliosis and microgliosis and endoplasmic reticulum stress mediated by Aß oligomers in vivo. We have developed a molecular tool that blocks the activation of the molecular cascade that mediates gliosis via Aß oligomer/integrin ß1 signaling.


Asunto(s)
Péptidos beta-Amiloides , Gliosis , Integrina beta1 , Señales de Clasificación de Proteína , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Humanos , Integrina beta1/metabolismo , Ratones
2.
Cell Death Dis ; 13(3): 253, 2022 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-35306512

RESUMEN

Amyloid beta (Aß)-mediated synapse dysfunction is an early event in Alzheimer's disease (AD) pathogenesis and previous studies suggest that NMDA receptor (NMDAR) dysregulation may contribute to these pathological effects. Although Aß peptides impair NMDAR expression and activity, the mechanisms mediating these alterations in the early stages of AD are unclear. Here, we observed that NMDAR subunit NR2B and PSD-95 levels were aberrantly upregulated and correlated with Aß42 load in human postsynaptic fractions of the prefrontal cortex in early stages of AD patients, as well as in the hippocampus of 3xTg-AD mice. Importantly, NR2B and PSD95 dysregulation was revealed by an increased expression of both proteins in Aß-injected mouse hippocampi. In cultured neurons, Aß oligomers increased the NR2B-containing NMDAR density in neuronal membranes and the NMDA-induced intracellular Ca2+ increase, in addition to colocalization in dendrites of NR2B subunit and PSD95. Mechanistically, Aß oligomers required integrin ß1 to promote synaptic location and function of NR2B-containing NMDARs and PSD95 by phosphorylation through classic PKCs. These results provide evidence that Aß oligomers modify the contribution of NR2B to NMDAR composition and function in the early stages of AD through an integrin ß1 and PKC-dependent pathway. These data reveal a novel role of Aß oligomers in synaptic dysfunction that may be relevant to early-stage AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Proteína Quinasa C/metabolismo , Receptores de N-Metil-D-Aspartato , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Hipocampo/metabolismo , Humanos , Integrina beta1/metabolismo , Ratones , N-Metilaspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA